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1 | INTRODUCTION

Chrysanthi Papadimitriou? |

Paul Kolmer? |

Abstract

Integrated dynamic scheduling (IDS) and economic nonlinear model predictive control
(eNMPC) enable economic operation of chemical plants subject to volatile energy
prices. Herein, we combine the two concepts into an integrated two-layer scheme.
Therein, IDS performs “long-horizon” scheduling on a day-ahead (DA) market and
eNMPC “short-horizon” improvements on an intra-day (ID) market. A case study
demonstrates 5% economic savings over stationary operation. In contrast, stand-
alone IDS and eNMPC using DA prices reach 1% and 2.5% savings, respectively. We
identify arbitrage as the main driver generating the additional benefit. Additionally,
we compare our scheme to stand-alone eNMPC in three ID price scenarios, where
our approach consistently realizes savings of 5%. Conversely, eNMPC is price sensi-
tive with variable revenue between 1% higher costs and 10% savings. Finally, requir-
ing significantly shorter prediction horizons than stand-alone eNMPC, our approach

eases price forecasting and enhances real-time capability.

KEYWORDS
bilevel problem, dynamic scheduling, flexible operation, hybrid model, multi-layer control

operation, that is, when scheduling decisions are made on the time

scale of process and control dynamics.® Such transient operation

Traditionally, the two disciplines of scheduling and control have been
considered as complementary but separate layers in hierarchical deci-
sion, each acting on different time scales. Over the past decades,
however, the economic potential of integrating these layers has
attracted a growing interest and numerous works have revealed a

considerable benefit of a joint treatment.>?

The integration of sched-
uling and control is particularly advantageous in cases where the

scheduling horizon comprises a significant amount of transient

Both first authors contributed equally to this work.

occurs, for example, when implementing hourly or sub-hourly load
changes to profit from electric energy spot markets in the context of
demand response (DR) or demand-side management (DSM).*> Under
these circumstances, time-scale separation of the hierarchical layers is
often no longer given and the de-facto interaction of the decision
layers degrades economic performance when disregarded.®”
Intuitively, energy-flexibilization and DSM require certain process
design properties that allow for a flexible production. In this regard,
flexibility capability is not only limited by the mechanical robustness
of a process,® but also by the ability to adapt the process topology to
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(de)activate energy-intensive subprocesses,
11,12

210 store (intermediate)

products, or vary purity grades.®® Herein, we restrict ourselves to
processes that inherently provide flexibility capacities and we focus
on the development of flexibility enabling operating strategies.

There are two paradigms for integrating scheduling and control,
referred to as “top-down” and “bottom-up” approaches.'® Both
approaches consider the dynamics of the controlled plant in their
decision making. Bottom-up strategies incorporate the scheduling task
into a (usually model-based) controller by equipping the controller
with an economics-driven cost function. The most prominent bottom-
up approach is economic nonlinear model predictive control (eNMPC),
that is, nonlinear model predictive control (NMPC) using an economic
cost function.*

1516 also referred to as integrated dynamic

The top-down paradigm,
scheduling (IDS) hereinafter, integrates the decision layers by taking
account of the open-loop or closed-loop plant dynamics in the schedul-
ing layer. Thereby, the hierarchical architecture of process automation
is preserved and the integration is addressed from the scheduling side.
Various formulations of IDS have been proposed, some of which explic-
itly account for the closed-loop behavior due to tracking control laws

17.18 or MPC optimality conditions.t??°

by embedding the PID formula
Considering the control dynamics allows to respect (and even exploit)
the joint response of process and tracking controllers in the dynamic
scheduling of the production targets. Both top-down and bottom-up
strategies result in optimization programs that are computationally
expensive to solve. Various strategies to accelerate the solution have
been proposed. These include model reduction,*?%?2 decomposition

schemes,18'23'24 25-27

and surrogate modeling.

Recently, we conducted a detailed comparison of the two para-
digms.?® While eNMPC promises a higher economic performance,
careful controller design is needed to limit control delay due to the
high computational expenses and to establish desired system prop-
erties such as stability.2? On the other hand, IDS has the advantage
of building upon an existing control infrastructure. Therein, the
lower-layer stabilizing tracking controllers are usually computation-
ally cheap and maintain the desired closed-loop properties. Clearly,
irrespective of the specific implementation of the top-down para-
digm, its overall performance strongly depends on the properties of
the lower-layer controllers. Overall, bottom-up and top-down
approaches have been considered as competing technologies for
achieving the same task.328-30

Numerous studies have investigated optimal DSM of electrified

3122 and chlo-

chemical processes such as air separation units (ASUs)
rine electrolysis.>**3> For recent reviews see Mitsos et al. 4 and Cegla
et al. .%¢ Moreover, different electricity markets have been considered,
in particular balancing reserve,3”% day-ahead (DA) auction,®?*° and
continuous intra-day (ID).***? Additionally, economic benefits of
simultaneously participating in multiple energy markets (particularly
DA and ID markets) have attracted interest.*>*>-*5> Frequently, the
participation on multiple markets is considered as a two-stage prob-
lem in which the bidding proceeds in a sequential manner.#24¢

Due to the different bidding and market clearing mechanisms, the
different control paradigms are not equally suitable for the DA and ID

auction and the continuous ID markets. In particular, the bidding and

clearing period of the DA and ID auction markets comprise 1 h
and 15 min energy products for the full next day, respectively. Hence,
auction markets are particularly well suited for a day-ahead schedul-
ing, that is, IDS. On the other hand, progressive short-term trading on
a continuous ID market fits well into the eNMPC framework. Here,
15 min energy products are traded in a “pay-as-bid” fashion. How-
ever, also in a day-ahead IDS strategy, major process disturbances
may trigger a re-computation of the schedule and necessitate energy
purchase on the continuous ID market.

Despite a plethora of works on flexible process operation, none
of the above articles on multi-market scheduling considers the
dynamic effects of process control while enabling trading between
different spot markets. Although there exist some strategies to com-
bine multiple economic automation layers,*” *° these approaches
consider a single market and are rather designed for a lower-layer
economic disturbance rejection. However, a strategy to harmonize
multi-market participation with an integrated process control system
is missing.

Herein, we combine the strengths of IDS and eNMPC into an
economically superior scheme. For the computationally cheap
implementation of IDS, we employ the concept of data-driven
scale-bridging models.?”?> We solve the respective IDS problem
to purchase hourly energy products on the DA market in a first
optimization stage. In the second stage, we employ eNMPC with a
short prediction horizon to improve and exploit the scheduling
decisions on the continuous ID market through real-time trading.
To limit the complexity of the scheduling problem, we do not
account for the (uncertain) ID market in the day-ahead scheduling
computations.

We provide a literature review of the two integration approaches
in Section 2 and develop an integrated automation hierarchy with two
economic layers in Section 3. Section 4 introduces the ASU case study
and presents the specific formulation of the scheduling problem. In
Section 5, we compare the proposed scheme to the standard inte-
grated frameworks and discuss the results. Finally, we draw conclu-
sions in Section 6.

2 | PROCESS OPERATION SCHEMES

We briefly review the state of the art on NMPC, eNMPC, and IDS.
Moreover, we discuss the concept of scale-bridging models and
present Hammerstein-Wiener models as a common empirical
input-output structure for scale-bridging modeling. All methods lay
the foundation for the hierarchical economic scheme proposed in

Section 3.

21 | Nonlinear model predictive control

A model predictive controller repeatedly solves an optimal
control problem on a sampling grid and implements the first control
move to operate the process.’® A common formulation of the control
problem reads:
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min Jch(x(t),u(t),t) dt, (1a)

st M(t)=f(x(t)u(t)), VEeTe, (1b)
x(to) =xo. (10)

X(t) € X, u(t) €U, Vte T, (1d)

where T = [to,to + 7| represents the time domain with start time to
and prediction horizon .. Further, x(t) € R™ are the states, and
u(t) e R™ are the controls. The integral cost function with running
cost Z: R™ x R™ x R— R is minimized subject to a dynamic prediction
by Equation (1b), initial conditions in Equation (1c), and admissible sets
X and U of states and controls, respectively. The dynamics are repre-
sented by differential equations, wherein f:R™ x R™ — R™, If the
matrix M e R™*"™ is singular, then we obtain a differential-algebraic
system of equations (DAE).

The optimal control problem (1) is resolved after each sampling
period Ats. Updating the current process states xo € R™ introduces
feedback and is typically realized by a state estimator. Further, the
controls are parameterized as piecewise constant profiles of step
duration At,. Depending on the formulation of #, we obtain a tracking
controller or an economic controller. Tracking NMPC (tNMPC) is typi-
cally realized by means of a quadratic running cost, for example:

£X()) = (X(t) = Xsp) Qu(X(t) = Xsp), (2)

where Q, is a positive semidefinite weighting matrix. Typically, the
tracking setpoint x, € X is constant over the horizon (setpoint track-
ing NMPC), although using a reference trajectory may be advanta-
geous in the context of flexible operation (trajectory tracking NMPC).
Setpoints for the scheduling-relevant variables vscheq(t)=h(x(t)),
where h: R™ — R", are provided by the superior scheduling layer. For
notational convenience, we use vV =Vgedsp below. Then, a full vector
of consistent setpoints xs, is either obtained via steady-state optimi-
zation or circumvented by an adapted tracking cost function:

£(x(t)) = (h(x(t) —v)"Qu(h(x(t)) - v), (©)

where Q, € R™*™ is again positive semidefinite. Additional terminal
cost and constraints can be added to Equation (1) to establish recur-
sive feasibility and stability.>*

Economic NMPC is obtained when specifying an economic cost

function, for example:
£(x(t),u(t),t) :==P(x(t),u(t)) - C(t), (4)

where P represents the power demand at a given operating point and
C%(t) is the variable energy price. Further, economic constraints can
be included in Equation (1). Again, additional cost terms or constraints
may be added to the control problem to establish properties such as
stability.*42?

AI?BIFJ R NALJ?,;f20

2.2 | Integrated scheduling and real-time
optimization concepts

There are four strategies to realize the top-down paradigm for contin-
uous processes. In the literature, these strategies have been adopted
to both scheduling and real-time optimization (RTO) tasks. As we only
consider single-product plants here, we do not distinguish between
scheduling and RTO. Below, we provide a brief review of the

strategies.

221 | Transition tables

The first class of integration approaches equips the steady-state
scheduling model with dynamic ramping constraints to account for
the transition times between operating points.>>°27>¢ Due to the
quasi-stationary modeling, the scheduling problem remains relatively
simple, and the pre-computation of “transition tables” can be
decoupled from the scheduling calculations.>” However, the approach
relies on simple, for example, linear, transition profiles and completed
transitions between well-defined steady states. Both requirements

pose a considerable restriction to processes with distinct transients.

222 | Open-loop dynamic optimization

In order to rigorously account for the transient process behavior, the
optimization can be formulated as a dynamic scheduling or dynamic
real-time optimization (DRTO) problem, employing a mechanistic
multi-time-scale process model.>®°? In the context of DSM, the
approach was later adapted by several authors.>>11:6%61 Solving this
open-loop problem provides the reference trajectories for state and
controls to the lower-layer tracking controller, cf. Equation (2). How-
ever, this type of scheduling problem still represents a very idealized
perspective, where the closed-loop effects due to the tracking control
laws, plant-model mismatch, disturbances, and other factors are disre-
garded. In addition, the optimal schedule is relatively expensive to (re-
Jcompute. To address the computational aspect, low-order reduced
models may be constructed to capture only the scheduling-relevant

dynamics in the open-loop DRTO problem.®4%42

223 | Closed-loop dynamic optimization

A tighter integration of the layers is achieved by embedding the control

laws as additional constraints into the DRTO problem, for example,

including the PID formula®® or lower-layer MPC algorithm.!?20.63:64

Thereby, the dynamic closed-loop (setpoint-to-output) process behavior
is explicitly accounted for in the scheduling computations. Since the

transient operating phases and associated control moves are captured

more realistically, this approach provides superior schedules.t?2%42

|65

Kumar et a observed an analogue effect for the integration of base

layer control and supervisory control, where modeling the PID base
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layer dynamics in an MPC prediction model improved the overall
closed-loop performance in some cases.

From a system-theoretic perspective, embedding the (closed-
loop) tracking control law into the DRTO problem is the most rigorous
approach to layer integration. However, embedding an MPC algo-
rithm, that is, a sequence of MPC optimization problems, into the
scheduling program leads to highly complex bilevel programs. Such
scheduling programs are typically nonconvex and non-differentiable
due to complementarity constraints arising from the Karush-
Kuhn-Tucker conditions of constrained MPC problems. Despite first
results on input-constrained MPC,2%%%%7 accounting for the closed-
loop behavior of output-constrained MPC remains an open research
problem towards the application of lower-level MPC. Moreover, dis-
turbing effects such as plant-model mismatch are difficult to capture
by this approach. At the same time, most of the information contained
in the lower-level problem is not relevant to the scheduling decision

making.?®

224 | Low-order closed-loop dynamic optimization
The computational burden described in Section 2.2.3 can be lowered
by substituting the representation of the process under supervisory
tracking control by a reduced input-output model of the closed-loop
process response.”2>%8 Such low-order representations are termed
“scale-bridging models” (SBMs) and encapsulate the feedback struc-
ture of control law and dynamic plant response as visualized in
Figure 1. Another variant of this approach was presented by Du
et al. ,*” who parameterized the reference trajectory by a dynamic
model rather than capturing the closed-loop process response. We
regard their approach as a hybrid version of transition tables
and SBMs.

SBMs can be obtained through model reduction,®’ empirical
model identification from closed-loop simulations,?> or techniques to
approximate the lower-level problem from the previous paragraph.®*
Data-driven SBMs can also be directly identified using historical oper-

t.70

ating data from the plan This last case does not require a detailed

plant surrogate and is inherently capable to account for plant-model

Dynamic scheduling using SBMs . ce(®)
(brRTO) [

v(t) Spot market

Tracking controller(s)
(tNMPC)

Process + Base layer control

i x(t) u(t)

FIGURE 1
models (SBMs).

Integrated scheduling and control using scale-bridging

mismatch of a model-based controller. Finally, an SBM may be built as
a combination of mechanistic and data-driven submodels, that is, a
hybrid model (further details in Section 2.3).

SBM-based IDS may be able to compensate poor tracking behavior
to some extend, yet we cannot expect an overall high performance in
such cases. On the other hand, SBMs require updating if the
scheduling-relevant dynamics are altered, for example, through changes
made on the controller tuning. Further, the complexity of SBM identifi-
cation grows with the number of setpoint parameters, for example,
when using multiple setpoints or reference trajectories.

Closed-loop dynamic scheduling has been used extensively in the
recent literature and typically achieve economic savings between 1%
and 15% on day ahead market compared to stationary opera-
tion.25286771 | extreme cases, savings up to 50% have been
reported.’””? We remark that cost savings strongly depend on the
chosen benchmark case and the price profile. Hence, a too conserva-
tive benchmark operating point may suggest higher than realistic sav-
ings due to a high power consumption reference.

In most works on IDS, tracking controllers without output con-
straints have been considered, which are characterized by a suffi-
ciently smooth closed-loop setpoint-tracking response.?> Conversely,
in the presence of hard output constraints, the closed-loop response
can be non-smooth and smooth SBMs are at best moderately accu-
rate. This observation is consistent with the discussion in
Section 2.2.3 and references cited therein. To improve the overall
constraint satisfaction, strict output (hard) constraints may be formu-
lated at the scheduling level. These (back-off) constraints are more
conservative than the controller constraints.”®”% Similar to control
law embedding, the identification of non-smooth SBM for processes
under output-constrained (N)MPC remains an open research problem.
Consequently, we herein limit ourselves to input-constrained
tracking NMPC.

2.3 | Scale-bridging models

We consider IDS using SBM as a practical compromise of complexity
and accuracy of the computations. Recall that an SBM describes the
dynamic response of the scheduling-relevant process variables y to
changes in the scheduling degrees of freedom v, that is, the setpoints
to the tracking controllers. For example, y may contain both the
energy consumption and the production rate. To formulate

the respective scheduling problem, we denote a generic SBM by:
0=F*M(z(t),2(t),y (b),v(1)), (5)

where z(t) are differential (data-driven) states of the SBM. Notice that
we may alternatively use a discrete-time model, for example, an auto-
regressive model.”! Herein, we consider a hybrid SBM combining
mechanistic and data-driven scale-briding submodels. In particular, we
employ mechanstic dynamic models of the scheduling-relevant prod-
uct storage tanks. On the other hand, the main production process is

captured by data-driven SBMs. Combing the submodels by means of
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complementary energy and mass balances yields an overall
hybrid SBM.

Different types of data-driven SBMs have been used in the litera-
ture, including linear'”%%%? and block-structured®>’* models.
Hammerstein-Wiener (HW) models represent a good compromise
between a simple structure and reliable long-term forecasts.”” In addi-
tion, strategies to exploit the nonlinear HW block structure in dynamic

747677 Consequently, we adopt

optimization are  known.
Hammerstein-Wiener models as data-driven SBMs here. Single-input
single-output (SISO) HW models can be stated in continuous-time

state-space representation as follows:
#(t) = Az(t)+Bfu(v(t)), 2(0)=0, (6a)

y(t) = fw(Cz(t) +Dfu(v(t))), (6b)

where v(t) € R is the single SBM input (i.e., subprocess control set-
point), fn:R— R is the nonlinear (Hammerstein) input map, and
fw:R— R is the nonlinear (Wiener) output map. Different function
types can be used for the nonlinear blocks, such as piecewise linear,
polynomials, sigmoid networks, and ANNSs.287>77 Further, A € R™",
BeR™1, CeRY™, and D e R are linear system matrices. In the
case of multiple scheduling-relevant variables y;, several SISO models
are used. HW models can be identified from recorded plant data or
closed-loop simulation records through a system identification tool-
box, for example, MATLAB.

24 | Formulation of dynamic scheduling problem
using SBM

The generic form of the IDS-DRTO scheduling problem with SBM

embedded reads:

i P(t)-C(t) dt
Vmngjﬂmco

st.0 = FBM(z(t),2(t),y(t),v(t),P(t) = yq(t), @)

0 >c(y(t),Co(t)t), te T

Therein, 75 =0,7s] is the scheduling time domain and v: 75— R are
the scheduling degrees of freedom, for example, controller setpoints.
We assume a piecewise constant parameterization of v in an admissi-
ble set V. The running cost is similar to Equation (4) but additional cost
terms may be added. The power demand P(t) is assumed to be the
first output of the scale-bridging model and C®(t) is the electricity
price. Finally, ¢ is a generic map to represent path and point
constraints.

Solving the IDS problem (7) provides optimal controller setpoints
v*(t). Since we focus on scheduling for DSM of continuous single-

70.78 vari-

product plants, we do not consider multi-product scheduling,
able product grade, or flexible production order.”® Furthermore, while
the scheduling problem involves a sequence of setpoints, these are

only successively given to the controllers, that is, the lower-layer

AI?BIFJ R NALJE’;f20

controllers are setpoint tracking controllers given a single setpoint,
v* (t), rather than reference trajectory tracking controllers. The exten-
sion of the proposed method by these aspects is left for future
investigations.

Irrespective of the type of tracking controller, some of the operat-
ing constraints may be economically critical and should therefore be
incorporated as scheduling constraints. One common example is prod-
uct quality, where on the one hand over-purification curtails economic
benefit and on the other hand quality violations (under-purification)
result in production losses.®° Adding such economically critical quanti-
ties as scheduling constraints or even setpoints may hence enable an

extra economic profit.

3 | TWO-LAYERSCHEDULING AND
ENMPC SCHEME

As previously discussed, the competing paradigms IDS and eNMPC
are practically most suited for different types of energy markets.
Hence, we propose to combine the two strategies into an integrated
two-economic-layers (TEL) scheme. We introduce the basic concept

in Section 3.1 and provide a mathematical formulation in Section 3.2.

3.1 | Basicconcept
The TEL strategy combines the top-down and bottom-up paradigms
and is visualized by Figure 2. In the top economic layer, we employ
IDS to participate in an auction market. To keep the scheduling prob-
lem simple, we do not include the uncertain continuous ID market at
this stage but perform a pure DA scheduling. In the subordinate eco-
nomic layer, eNMPC is used for process control and for short-term
economic improvements on a continuous trading market, that is, con-
tinuous ID market.

The automation layers are integrated as follows. Similar to stand-
alone IDS, the top-layer scheduling employs an SBM of the process
under supervisory (economic) control. However, as we do not con-

sider the ID market at this stage, the economic controller(s), here

Dynamic scheduling using SBMs CPA(t)
(TEL-DRTO) D

Economic controller C™P(t) m
(TEL-eNMPC) [~~~ 777

z(t) u(t) ID

Process + Base layer control

FIGURE 2 Proposed TEL scheme for integrated scheduling and
control with electricity arbitrage.
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eNMPC, acts as an energy tracking controller with no degrees of free-
dom for economic optimization. Solving the IDS provides a power
consumption reference and process variables schedule to the eNMPC.
The eNMPC optimizes a prediction model of the process and
base-layer controllers.®® Given the IDS power reference, the eNMPC
generates further economic profit by performing real-time economic
corrections through trading on a continuous market, here ID market.
These improvements are absent a conventional top-down approach,
where tracking controllers realize process operation according to the
schedule. In contrast, TEL-eNMPC is able to exploit short-term fluctu-
ations in the energy price over the prediction horizon by purchasing
or offering energy volumes. This mechanism is called arbitrage and
further discussed in the case study below.

Intuitively, economic improvements from such a TEL strategy will
grow with increasing differences in the prices on the two markets, as
long as temporal price deviations occur in both directions, that is, we
can switch between buying and selling energy products. Thereby, an
additional economic benefit over classic IDS is realized through arbi-
trage. An approximately zero-mean difference between DA and ID
prices, that is, a balanced positive and negative deviation, is very com-
mon and thus a legitimate assumption.8! Based on the procedure and
frequency of DA market clearing, for example, every 24 h on EPEX
Spot market, the IDS calculations are performed rather infrequently.
Conversely, eNMPC optimizations are executed recursively at the
controller frequency, for example, seconds to minutes. Here, the pro-
cess state as well as the ID prices are updated at every sampling
point.

An important property of the TEL structure is that the eNMPC
prediction horizon can be relatively short compared to a stand-alone
eNMPC application. Specifically, the prediction horizon only needs to
be long enough to control the process and contain a sufficient amount
of positive and negative deviation of the ID price from the DA price
to benefit from market deviations. As discussed by Germscheid
et al. *° and Papadimitriou et al. ,%! the principal frequencies of such
market deviations are in the range of 0.5 h™! to 2h~. Hence, we can
expect that short eNMPC horizons spanning a few hours are suffi-
cient, which is a major advantage of our TEL strategy. In particular,
the long prediction horizons needed in stand-alone eNMPC imple-
mentation constitute a major computational obstacle to practical
eNMPC applications.®?

3.2 | Mathematical formulation
The task is a two-stage optimization problem with each stage corre-
sponding to an economic layer. At the first stage (top layer), we com-
pute an optimal schedule by solving Equation (7). Therein, the SBM
encapsulates the closed-loop dynamic response of the process and
economic controller. We only consider DA spot market at the first
stage and assume that CP” is known.

The key observation for constructing a corresponding SBM is that
an economic controller behaves like a tracking controller when

restricted to a fixed power and production schedule with no freedom

for economic decision making. This observation simplifies the closed-
loop data collection and SBM identification considerably. In fact, we
may simplify the problem further by embedding the SBM of a setpoint
tracking controller into the IDS problem, provided that the optimal
values v* (t) constitute a feasible reference for the economic control-
ler in the lower layer. For example, this requirement is fulfilled for set-
point tracking NMPC and eNMPC with identical setup except for the
cost function. Since an SBM of setpoint tracking NMPC is easier to
obtain, we pursue this strategy here.

At the second stage, we repeatedly solve an eNMPC problem in
closed-loop operation. Here, the eNMPC can operate the process
more freely than tNMPC by purchasing additional energy on the ID
market and no strict ASU production schedule. Only a reference pro-
file of already purchased energy is provided by the upper scheduling
layer. However, we must include additional requirements and eco-
nomic constraints to the eNMPC problem, going beyond a tNMPC
formulation. In particular, to fulfill the power consumption commit-
ment, the hourly DA energy products must be consumed by the pro-
cess or sold on the ID market. Further examples of economic
constraints include: i) limits on the amount of energy traded on the
continuous market, ii) endpoint constraints on the eNMPC prediction
horizon (e.g., total production or quality as scheduled), and iii) fixed
time point constraints (e.g., an end-of-the-day constraint on the pro-
cess inventories).

We formulate the eNMPC optimization problem as a variant of
Equation (1) by specifying the economic stage cost:

£(x(t),u(t),t) = AP(x(t), u(t),t)-C(t). (8)

Therein, C'P is the energy price on the continuous ID market and AP
describes the deviation of energy consumption from the IDS schedule,
that is, AP(x(t),u(t),t) = P(x(t),u(t)) — P'P5(t), where P'PS(t) is the pro-
cess power consumption as scheduled and purchased due to IDS.
Since IDS considers DA prices, we use P'P5(t) and PPA(t) interchange-
ably. The deviation AP(t) reflects the power purchased (AP(t) >0) or
sold (AP(t) < 0) on the ID market, wherefore P'P(t) = AP(t). Hence, for
P'® =0 the IDS schedule is tracked exactly, that is, eNMPC acts as a

“power tracking controller”.

4 | CASESTUDY

We assess the performance of the TEL operating strategy on the
nitrogen-product ASU with product storage from Caspari et al. ;28
shown in Figure 3. The ASU is composed of the main air compressor
(MAC), two plate-fin multi-stream heat exchangers (PHX1, PHX2),
two turbines (TURB1, TURB2), a high-pressure distillation column
(HPC) with heat-integrated reboiler and condenser (IRC). The product
storage system includes a liquefaction unit, a storage tank, and an
evaporator.

The scheduling-relevant variables (SRVs) for IDS and eNMPC are
the ASU production rate F,g,, the molar fraction of impurities in the

product I, the product demand F4em, the power intake of the main
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FIGURE 3 Schematic representation of the ASU, adapted from Caspari et al. .22 MVs in blue, SRVs in green, and CVs framed in orange.

compressor Pnac, and the power output of the two turbines Py,,1 and
Pturb2. Moreover, the power consumption of the liquefier P;q and the
input and output flow rates of the storage tank Fiankin and Fiankout are
SRVs. The temperature difference AT between reboiled and con-
densed medium in the IRC is control relevant but not scheduling rele-
vant as we discuss below. Finally, the tank levels of reboiler Nj.. and
storage unit Ny have integrating behavior and must therefore be
controlled, with Nk also being scheduling relevant.

The control inputs of the process are the molar flow rate of the
feed air stream Fp,c, the split fraction &, of air flow into the turbine,
the split fraction &4 of the product stream into the liquefier, the reflux
fraction &;,p, and the liquid drain from the reboiler Fyi,. The product
demand F4em is met by mixing gaseous product from the ASU and
evaporated product from the storage tank. We do not consider the
product storage system as part of the ASU. Instead, we treat the ASU
and storage system as two connected subsystems. While IDS and eco-
nomic NMPC optimize the total system, tracking NMPC only deals
with the ASU subsystem.

In nominal operation, the ASU produces 20 mol/s nitrogen prod-
uct at 1500 ppm impurity content. The corresponding power demand
is Pasy = 296.8 KW. Further, the process inventories are Ni, =25 kmol
and Nk = 1728 kmol and defined as 100%. The nominal storage tank
holdup corresponds to a full-day production volume. We assume that

the process is initially at its nominal operating point.

41 | Implementation

The scheduling and control framework is implemented in Python 3.6
and employs our open-source dynamic optimization framework
DyOS.? Therein, DyOS combines the DAE integrator NIXE®® and NLP
solver SNOPT.®* We specify an optimality tolerance of 1E-4,

feasibility tolerance of 1E-3, and integration tolerances of 1E-5. The
full-order model and SBMs are written in Modelica and accessed
through a Functional Mock-up Interface. All computations are exe-
cuted on a server with Intel®Xeon®E5-2640 v3 CPU @ 2.60 with
128 GB RAM.

42 | Top-down IDS

The degrees of freedom in the IDS problem are the manipulated vari-
ables of the storage system as well as the ASU production rate set-
points Fasusp transmitted to the tNMPC. Before formulating the IDS
problem, we present the tNMPC setup and the resulting SBM.

421 | Tracking NMPC
We formulate the tNMPC based on Equation (1) using the full-order
dynamic model of the ASU subsystem in combination with quadratic

tracking cost:

£(-) =o1-(Fasu(t) - Fasu,SD)2 + @2 (lasu(t) — ’asu,5p)2 (9)
+@3 - (ATirc(t) = ATiresp)” + @4 - (Nire (t) = Niresp)

where w; are constant weights and the constant setpoints of the con-
trolled variables (CVs) are indicated by “sp”. The production rate set-
point Fasusp May change between tNMPC optimizations, whereas the
other setpoints are generally fixed. The manipulated variables (MVs)
areu= [Fmac,éturb,ftop,Fdrain]T. We employ piecewise constant controls
of At, = 5textmin duration and do not penalize the magnitude of step
changes. Table 1 collects the tNMPC weights, setpoints, and input
constraints. To enable flexible operation rather than (inflexible)
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TABLE 1  Controller tuning of tNMPC.

Values
Variable Unit Type Weight (w;) (SP or MV)
Fas mol/s cv 1.0 [15,25)
lasu ppm cv 0.003 10
ATie K cv 10-5 2.5
Nire % cv 104 100
Fmac mol/s MV - [30,55]
Frain mol/s MV — [0,2]
Euro - MV - 0,0.1]
Etop = MV = [0.51,0.54]

constraint tracking, the impurity setpoint of 1000 ppm is below the
maximum 1500 ppm.

We do not impose any state or output constraints because such
constraints can result in a nonsmooth closed-loop response and thus
prohibit the application of HW SBMs. Including such constraints will
require further research within future works. Finally, process feedback

is realized by means of full state feedback.

422 | SBM identification

We generate an identification data set comprising the response of the
SRVs of the ASU under tNMPC to step changes in the production rate
setpoint Fasusp. TO this end, we initialize the ASU at 1000 ppm product
quality and generate a random sequence of setpoints, Fas,sp € [15,25],
on a 72h horizon. The training data set combines slow and fast set-
point step changes of 3.75 and 0.25h duration, respectively, to
account for both slow and fast process dynamics. In a similar fashion,
we construct a test data set of 10 h duration, comprising 1 and 0.25h
steps in the production setpoint.

The ASU production rate F,5, as well as the ASU power demand
P.su are both SRVs. Furthermore, an investigation of the identification
data set reveals that the product impurity I.s, temporarily exceeds the
targeted impurity limit of 1500 ppm. Recall that our tracking NMPC is
merely input-constrained, wherefore such a high impurity is not
infeasible from the NMPC perspective. However, due to quality
requirements, the product impurity is scheduling-relevant and will be
hard-constrained in the scheduling problem. Since all other CVs of
tNMPC do not exceed the operating limits in the identification data
set, we assume that these are uncritical and not scheduling relevant.

We scale the training data to the value range [0,1] and use the
MATLAB 2023 System Identification Toolbox to generate HW models
for all SRVs. For the model selection, we perform training over a wide
selection of hyperparameters (e.g., type of nonlinearities, order of lin-
ear dynamics) and select the model with the lowest normalized Akaike
criterion (nAIC), similar to.”> The types of nonlinearities examined are
polynomials, sigmoid networks, ANNs, DNNs with the hyperbolic tan-

gent and sigmoid activation functions. After training, the resulting

TABLE 2 SBM identification results.

Variable Train fit Test fit
Fasu 99.65% 99.56%
Past 91.04% 89.19%
lasu 71.90% 85.62%

model is validated on the test data set. The resulting models use poly-
nomials (Fasu, lasy) and ANNs (P.g,) for the nonlinear blocks, and fifth
to eighth order of linear dynamic blocks. Table 2 lists the train and test
accuracy of the models in terms of the normalized root mean squared
error (NRMSE). The values are comparable to Pattison et al. 2° and
Tsay etal..”®

Figure 4 depicts model testing for the impurity and power predic-
tion. Therein, the transients of the closed-loop response to tNMPC
setpoint changes are clearly visible, supporting the application of a
dynamic SBM. Despite some deviations, both SBMs capture the major
dynamic trends. Detailed information on the identification is provided
in the SI.

423 | IDS problem formulation

Combining the SMBs with a mechanistic model of the product storage
systems results in a hybrid process model and the upper-layer IDS-
DRTO problem (7) becomes:

FQLTJJT‘@JTS (Pasu(t) +Pig(£)) -CPA(1) dt, (10a)
St Fasu(®) = Frwa(tFasusp) (10b)
Pasa(t) = frawa(t:Fasusp). (10¢)

() = Frws(tFasusp) (10d)

Kion(®) = Frankin(6) ~ Fankout(£) (10e)
Fuankint) = &iq(t)-Fasu(t). (10f)

Pra(t) = fia(Eia()-Fasa(1)) (10g)
Faem(t) = (1—2&iq(t)) - Fasu(t) +Feankout (t) , (10h)
v(t) eV,y(t)ed(t),z(t)e Z(t), (10i)

where 75 =24 h. Equations (10b) to (10d) are the data-driven SBMs
initialized at the nominal operating point, Equations (10e) to (10g)
describe the storage system, and the path equality constraint in
Equation (10h) determines Fiikout and ensures that the product

demand is met. Equation (10i) represents the path and endpoint
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FIGURE 4 Testing of the identified SBMs. (a) Product impurity, (b) ASU power demand.

TABLE 3 Constraints in IDS-DRTO problem.

Variable Unit Value set Time set
Lasu ppm [0,1500] Ts
Ftankiin mol/s [0,10] T
Fiank,out mol/s [0,10] Ts
Neank % [0,200] Ts
Niank % {100} {zs}
Fasusp mol/s [15, 25] Ts
Siiq - (0,1] Ts

constraints as detailed in Table 3. The periodic endpoint constraint on
Niank gUarantees that the storage tank is only used to balance tempo-
ral over- and underproduction but not systematically drained
over a day.

The two scheduling variables, v= [Fasu,sp,r-fnq]T, are parameterized
as piecewise constant functions of fixed step length. Preliminary
experimentation with the value grid of F,ys, suggested that 1h
intervals are a suitable choice, matching with the 1 h energy prod-
ucts on the DA market. On the other hand, 20 min intervals are

used for &gq.

43 | Bottom-up eNMPC

The stand-alone eNMPC uses a full-order model of the total process
(ASU + storage system) and an economic cost similar to

Equation (10a), where the running cost:
()= (Pasu(t) +Piig(t)) -C* (1) (11)

Since the DA market clearing and eNMPC time horizon generally do
not harmonize, an eNMPC based on DA prices, C°(t)=CPA(t), is
purely hypothetical and only considered for comparison. Besides this

TABLE 4 Input and state constraints in eNMPC problem. Current
time to and prediction horizon 7. determine the prediction time
domain 7. = [to,to -‘r‘rc]

Variable Unit Type Value set Time set
Fasu mol/s cv [15,25] T
lasu ppm cv [0,1500] T
AT K cv [1,5] 7.
Nire % Ccv [20,160] 7.
Nirc % cv {100} {to+7c,24h}
Fankin mol/s cv [0,10] Te
Fiankout mol/s cv [0,10] T,
Niank % cv [0,200] e
Ntank % cv {100} {to+7c,24h}
Frnac mol/s MV [30,55] Tc
Farain mol/s MV [0,2] T
Ewurb = MV [0,0.1] e
Stop - MV [0.51,0.54] T.
Siiq = MV [0,1] e

hypothetical benchmark, we use continuous ID prices C'D(t), being a
more realistic scenario for stand-alone eNMPC.

The MVs include all control inputs of the process, that is, Fac,
Ewurbr Stopr Fdrain, @and &iq. The CVs comprise all economically and
control-relevant variables, see Table 4. We formulate path and point
constraints on the MVs and CVs and provide the respective sets in
Table 4. In particular, we formulate prediction horizon endpoint con-
straints on the tank inventories to recover the nominal values. This
endpoint constraint ensures recursive feasibility of the control pro-
gram. Additionally, we include end-of-the-day point constraints on
the tank inventories to prevent tank draining. Besides optimizing more
degrees of freedom than tNMPC and IDS-DRTO, the eNMPC prob-
lem also involves the larger number of constraints. The sampling time

is At; =5 min in all cases. Further, we implement full state feedback.
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44 | Two-layer IDS and eNMPC

We implement the TEL scheme as described in Section 3. Since we
employ the SBM under tracking NMPC, the upper-layer scheduling
problem (TEL-DRTO) is identical to Equation (10). Solving the TEL-
eNMPC problem vyields the scheduled power consumption
PPA(t) = PDA (t) + PR (t). The lower-layer eNMPC (TEL-eNMPC) is an

extended version of the stand-alone eNMPC described in the previ-

ous section. Specifically, we use the economic running cost:
£(-)=PPA(t)-CBA(t) + AP(t) -Cis (8), (12)

where AP(t) = Pagu(t) + Piq(t) — P (t) — Phr'(t) captures the deviation
from the power schedule. Further, we modify the constraints on the
storage tank level Ny, as stated by Table 5. Constraint (iii) ensures
that TEL-eNMPC optimizes around the scheduled reference, N4, (t),
instead of targeting the nominal level at the end of each eNMPC

optimization.

4.5 | Definition of operating scenarios

We compare the proposed TEL strategy to the single-layer eNMPC
and IDS approaches. Besides evaluating the economic revenue, we
contrast the operating strategies with respect to practical aspects.
Specifically, we examine different tNMPC and eNMPC prediction
horizons ranging from 2 to 12 h for all methods.

As a base case and benchmark, we consider nominal steady-state
operation of the ASU subject to DA and ID prices. This nominal oper-
ating point is the optimal steady state with minimum power demand
at 20 mol/s production rate at 1500 ppm purity grade. We consider a
scheduling horizon of 24 h length and hence use single-day DA and
ID price profiles. To avoid issues with a shrinking horizon at the end
of the day, we define a periodic scenario, that is, all prices repeat
after 24 h.

We use the DA and ID price scenarios from our recent publica-
tion.8! To represent the ID price, we select the ID3 index, which is the
volume-weighted average price of all trades that took place within
the last three hours before delivery.8°

The DA and ID price scenarios comprise 24 h and are constructed
based on historical data of European spot markets. The DA and ID
profiles are constructed through an averaging scheme, which includes
an ID baseline correction to ensure that the 24 h cumulative price dif-
ference between DA and ID profiles is zero-mean distributed.® Align-
ing the ID and DA profiles in this way improves comparability and
generalizability of the results. The resulting price scenario is shown in
Figure 5 and additionally provided via Git."

In addition to this first case, we consider two price scenarios with
non-matching mean price of the DA and ID profiles. Here, the ID

prices are jointly shifted such that the mean ID price lies 5% above

*Link: https://git.rwth-aachen.de/avt-svt/public/representative-electricity-price-profiles
(nominal daily profiles).

TABLE 5 Modified constraints in TEL-eNMPC. All other
constraints are identical to Table 4.
Variable Unit Type Value set Time set
(i) Neank % cv [0,200] T.
(ii) Niank % cv {100} {24n}
(iii) Niank % cv {Nitgi\k (to + Tc)} {tO + Tc}
= 200
p=
@ 150
(0]
2
8 100
>
=
k3
£ 50
8 — 1D
= —DA
0
0 5 10 15 20
Time (h)
FIGURE 5 DA and ID price profiles. The average price of both

profiles is 95.18 €/MWh.

the DA mean, that is, at 99.93 €/MWHh, and 5% below, that is, at
90.42 €/MWh, respectively. These shifts are realistic given the his-
toric distribution of ID/DA deviations.8* Apart from the shift, the ID
profiles have the same shape as in Figure 5.

5 | RESULTS AND DISCUSSION

In Section 5.1, we assess the economic revenue of an optimal steady-
state operation subject to the different price profiles and different
product purity grades. Section 5.2 discusses the results from the
single-layer IDS and eNMPC strategies. Subsequently, we compare all
results to the proposed TEL approach in Section 5.3. Lastly, we inves-
tigate the effect of a systematic ID price shift in Section 5.4. In the SI,
we provide further material such as a collection of all results in a sin-
gle table and additional plots.

5.1 | Optimal steady-state operation

We list the steady-state operating scenarios in Table 6. In this case
study, scenario SS-DA-1500 is used as the reference case. Therein,
the product quality is at its upper 1500 ppm impurity limit and the
ASU production rate is 20 mol/s. The total energy demand over
the full day is 7.12 kWh and the associated costs according to the DA
prices are 677.94 €. Hereinafter, we compare all other strategies

against this reference and provide the relative deviation of energy
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TABLE 6 Results of steady-state operation.

Relative energy

Operating Price lasu

strategy profile (ppm) Demand (%) Costs (%)
Reference DA 1500 +0.0 +0.0
(SS-DA-1500)

SS-1D-1500 ID 1500 +0.0 +0.0
SS-DA-1000 DA 1000 +0.4 +0.4

demand and costs in %. Since the DA and ID price profiles feature the
same 24 h average price of 95.18 €/MWHh, the results of SS-DA-1500
and SS-ID-1500 are identical.

In previous studies,?>28

a steady state at 1000 ppm purity
grade was considered as the nominal operating point due to con-
straint tracking limitations of linear MPC. This scenario corre-
sponds to SS-DA-1000. As expected, an operation at higher
product purity is associated with an increased energy consumption
of 0.4%. Therefore, choosing an operation strategy able to operate
the process close to its operating limits, for example, NMPC, is
clearly economically advantageous even in the stationary case.
Also, choosing a conservative benchmark such as SS-DA-1000 will
render any proposed operating scheme seem more economical.
Here, we challenge ourselves by selecting SS-DA-1500 as the

nominal operating scenario.

5.2 | Single-layer strategies
We compare the top-down and bottom-up strategies, that is, IDS and
eNMPC, respectively. We begin with an examination of the IDS

results and place the findings in a process and problem context.

52.1 | IDS using tNMPC

Table 7 summarizes the energy consumption and economic perfor-
mance. We distinguish two subcases. First, we consider the expected
savings as given by solution of the IDS-DRTO problem (10). However,
due to model errors of the SBM, the cost savings are lower when
applying the schedule to the process (IDS-tNMPC, i.e., closed-loop
results). Notice that the tank holdup at the end of the day reaches a
slightly too low value in closed-loop operation due to scheduling
errors. We account for this violation by adding the cost and energy
needed to compensate for the missing product based on the SS-DA-
1500 production costs.

Generally, the application of IDS realizes economic savings. Fur-
ther, the respective values of IDS-DRTO and IDS-tNMPC are compa-
rable. However, while the energy demand increases by approx. 5%,
the economic revenue is relatively small, at a cost reduction only
around 1%. Due to the less conservative steady-state benchmark and
the moderate DA price profile, the savings achieved by the IDS

AICBE RN AL—L1Lor2

TABLE 7 Results of (top-down) IDS with subordinate tNMPC.
The percentages state the relative deviation from the SS-DA-1500
reference.

Relative energy

Operating Price

strategy profile Demand (%) Costs (%)
Reference DA +0.0 +0.0
IDS-DRTO DA +5.1 -1.2
IDS-tNMPC DA +5.5 -0.8

strategy are less pronounced compared to Pattison et al. 2> and
related works.

The closed-loop trajectories of the process under IDS and tNMPC
are shown in Figure 6. In Figure 6A, we observe ASU production rates
above the nominal production during periods of low electricity prices.
Conversely, the production rate is reduced during high-price hours.
Notably, while different intermediate production rates between
20 and 25 mol/s are observed, a decrease of the production rate is
almost exclusively realized through a step to the 15 mol/s lower limit.
The behavior is consistent with previous studies®® and the periods of
over- and underproduction are balanced. The presence of a noticeable
share of nominal operation is explained by the high energy demand of
liquefaction, introducing an economical threshold for overproduction
and storage.

The product storage strategy is also visualized by Figure 6C. Inter-
estingly, the tank is used for storage but never drained below the initial
holdup of 100% reference storage, that is, 1.728 Mmol. The maximum
storage during the scheduling period is +6.4% at 17 h. Hence, a consid-
erably smaller storage tank may be designed in practice.

Figure 6B depicts the total power consumption of ASU and stor-
age system. The steps associated with an increased production, that
is, 2 to 4 h and 11 to 16 h, include the activation or deactivation of
the liquefaction system. Therefore, deviations from the nominal
power demand are asymmetric. Moreover, Figure 6D confirms that
IDS is able to satisfy the product quality constraint. Due to the over-
estimation of the product impurity by the SBM, see also Figure 4A,

the upper bound is never reached.

522 | ENMPC

Next, we assess single-layer eNMPC in combination with either DA or
ID prices. To this end, we investigate different prediction horizon z.
as listed in Table 8. We adjust the control step lengths At, to obtain a
degree of freedom (DOF) of the same magnitude in all control prob-
lems. Thereby, we limit the computational effort of eNMPC. The max-
imum value of At, =15 min agrees with the MV parameterization in

2882 |n Schifter et al. ,*!' the authors even

previous works.
used At, = 60 min.
We begin with eNMPC using DA prices. As seen in Table 8,

single-layer eNMPC with a short prodiction horizon below 6 h only
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FIGURE 6 Closed-loop process response under IDS and tNMPC. (a) ASU production rate, (b) total power consumption, (c) storage tank

holdup, (d) product quality.

TABLE 8 Results of (bottom-up) eNMPC using DA or ID prices.
The percentages state the relative deviation from the SS-DA-1500
reference.

Relative energy
Operating Te Aty DOF

strategy (h) (min) per MV Demand (%) Costs (%)
Reference - - - +0.0 +0.0
DA-2 2 5 24 +0.1 -0.1
DA-3 3 5 36 +0.8 -0.3
DA-4 4 7.5 32 +0.9 -0.5
DA-6 6 7.5 48 +1.9 -1.5
DA-9 9 15 36 +3.0 -2.0
DA-12 12 15 48 +2.7 -24
ID-2 2 5 24 +1.9 24
ID-3 3 5 36 +2.5 -3.1
ID-4 4 7.5 32 +2.5 -3.5
ID-6 6 7.5 48 +3.8 —4.3
ID-9 9 15 36 +4.6 —-43
ID-12 12 15 48 +4.0 —-4.4

generates a profit below 1%. For longer prediction horizons, eNMPC
outperforms IDS, while having a lower power demand. The results

suggest that profit primarily depends on the prediction horizons and

increases with z.. In addition, we suspect a correlation of DOF
and energy demand, where energy demand reduces with higher DOF.

Figure 7 visualizes key closed-loop trajectories of the process
operated by eNMPC using DA prices. As visible in Figure 7A, short-
horizon eNMPC (DA-2) does not excite the system notably around
the nominal operating point, which is also reflected in the total power
consumption, see Figure 7B, and storage tank holdup in Figure 7C.
The short-term excitation as present for DA-2 is likely to stress pro-
cess equipment but does not realize an economic profit. Clearly, the
combination of short prediction horizon and slow DA price trends is
ineffectual.

On the other hand, long-horizon eNMPC (DA-12) accomplishes a
significant economic benefit by operating the process flexibly and mak-
ing use of a large part of the admissible operating range, Figure 7A.
Similar to IDS, the process is operated around the nominal production
rate of 20 mol/s and there exist distinct periods of non-nominal opera-
tion, visible in Figure 7A,B. However, we observe a larger share of
intermediate production rates between the lower and upper limit that
are incrementally changed between short periods. This behavior was
also observed by Caspari et al. 28 and is explained by the shorter control
intervals and online feedback to the economic controller.

While DA-2 operates the process near the upper impurity limit,
DA-12 intermediately drives the process to higher product purity.
There, over-purification is seen during periods of underproduction,

while reaching 1500 ppm when increasing production as well as at
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FIGURE 7 Closed-loop process response under eNMPC and DA prices. (a) ASU production rate, (b) total power demand, (c) storage tank

holdup, (d) product quality.

the end of the day. Further, compared to the one-sided usage of the
tank by IDS, the DA-12 eNMPC strategy drains and fills the tank in
both directions around the nominal holdup, Figure 7C.

Next, we assess single-layer eNMPC in combination with ID
prices. As for the eNMPC-DA combination, longer prediction horizons
are economically beneficial, Table 8. However, the economic profit is
generally higher for the ID profile, outperforming eNMPC-DA in all
configurations. The maximum relative savings of 4.4% are provided by
the ID-12 configuration. Comparing the DA and ID price profiles in
Figure 5 underpins the wider range, stronger fluctuation, and higher
frequencies in the ID profile over one day. Similar to Caspari et al. ;28
we conclude that a wide-range high-fluctuation price profile is eco-
nomically advantageous in the context of a single-layer eNMPC
strategy.

Figure 8 presents the closed-loop process response in the ID sce-
narios. Compared to the IDS and eNMPC-DA setups, the process is
operated more dynamically and aggressively, Figure 8AB. In particu-
lar, a short-term increase and decrease of the production rate around
the nominal point is visible in every hour. Compared to ID-2, the
periods of increased or decreased production are longer for ID-12.
Given the storage tank hold-up constraint in Table 4, the near-nominal
operation by ID-2 is not surprising and also reflected in the nearly
constant tank holdup, Figure 8C. Further, the amounts of product
stored and withdrawn from the tank are comparable to the eNMPC-
DA configurations in Figure 7C. Likewise, the product impurity trajec-

tories in Figure 8D follow a similar trend as in Figure 7D. However,

the more aggressive process manipulation by eNMPC-ID is visible in
the form of several “spikes” in the profiles. Finally, the slight violations

of the purity bounds are attributed to feasibility tolerances.

53 | Two economic layers

We finally examine the proposed TEL scheme. Similar to single-layer
eNMPC, we consider different prediction horizons and control inter-
vals for the lower-layer eNMPC in the TEL strategy. Since the config-
urations are the same as in Table 8, we only state the control horizon
in Table 9. We provide the CPU costs of lower-layer eNMPC in the
Appendix. The upper-layer IDS is identical to the single-layer applica-
tion and thus the schedule in Table 7 remains valid.

From Table 9 we observe that the overall cost savings and energy
demand appear to be uncorrelated with the eNMPC horizon. Hence,
there is no practical benefit from using a prediction horizon above
2 h. We attribute the variance in the individual results to differences
in the control grid and numerical convergence.

Figure 9 depicts the closed-loop trajectories of the process oper-
ated by the TEL scheme. Since all configurations are comparably eco-
nomical, we only show the results of TEL-2. In addition, the
trajectories as scheduled by the upper-layer IDS are identical to
Figure 6. The closed-loop ASU production rate in Figure 9A exhibits a
significant deviation from the schedule in Figure 6 and is more compa-
rable to the eNMPC results in Figure 8. The same applies for the total

85U8017 SUOLULLOD BAIERID B|ed ! dde U} Ag peusnob 8. Sap1Le YO ‘@SN JO S9N 10} AXeig 1T 8UIIUO /8|1 UO (SUORIPUOD-PUR-SWR} WO B 1M ARe1q 1)U UO//SANY) SUORIPUOD PUE S L U3 885 *[5202/L0/9T] U0 ARIq1T8UIIUO 811 *BILBD LIRSS HALUD UD!INC WnuezsBunyasiod Aq TELGT 0R/Z00T 0T/I0pALI0D" A3] 1M ARIq1eu!|UOBLD /AN WOJj PopeojuMoq ‘9 ‘G202 ‘S06SLYST



SCHULZE ET AL.

14 of 20 AI?BIE] RNAL

T
n
s
£
[=]
Q
S
Q
=
°
o
-
[=
D
2]
< 5 .
0 2 4 6 8 1012 14 16 18 20 22 24
Time (h)
(A)

1.84
= 182
5- 1.8
=178 ad
2 3,
o 176 \
oL, / \,
o] et \
B o172 ,

7 s
Y7072 4 6 8 1012 14 16 18 20 22 24
Time (h)
©)

Bounds ID price
240 =
’B\ 0.45 ;
S 200 &
& 04 w
°
£ 035 160 o
g 2 E
S 03} 120 o
" R
QB) 0.25 80 .8
ot
o ' : g3t
B2 0 2
0 2 4 6 8 101214 16 18 20 22 24 =
Time (h)
B)
g
=1
2
>
s
g
5
2,
k
Ed
Q
El
]
<
&
.
0000 2 4 6 8 101214 16 18 20 22 24
Time (h)
D)

FIGURE 8 Closed-loop process response under eNMPC and ID prices. (a) ASU production rate, (b) total power demand, (c) storage tank

holdup, (d) product quality.

TABLE 9 Results the two-layer scheme combining IDS and
eNMPCs. The percentages state the relative deviation from the SS-
DA-1500 reference.

Relative energy

Operating

strategy T (h) Demand (%) Costs (%)
Reference - +0.0 +0.0
TEL-2 2 +4.7 —-4.1
TEL-3 3 +4.4 -4.1
TEL-4 4 +4.4 -4.3
TEL-6 6 +4.5 —4.4
TEL-9 9 +4.7 -3.8
TEL-12 12 +4.6 —-4.0

power consumption, shown in Figure 9B. However, we notice
extended periods of operation near the upper and lower produc-
tion rate limit during the 12 to 14 h and 17 to 21 h, respectively.
During these periods, the scheduled storage tank holdup changes
considerably, Figure 9C. Due to the terminal holdup constraints in
the lower-layer eNMPC problem, the closed-loop trajectories must
follow the scheduled tank holdup closely, necessitating in the
periods of minimum and maximum production. Notice that in pre-

liminary studies, eNMPC encountered feasibility problems when

removing the terminal holdup constraint. Figure 9D shows the
product quality response, which exhibits similar characteristics as
for eNMPC-ID in Figure 8D.

In Figure 10, we illustrate the trading behavior of the TEL
scheme. Therein, AE(t) denotes the cumulative traded energy (MWh)
over the respective 15min interval, i=1,2,...,96, rather than the
instantaneous power in MW. The traded energy AE(t) is calcu-
lated as:

rti+15 min
AE(t)= ,J

AP(z) dr, t€ [t ti+15 min), (13)
ti

where AP(t) corresponds to Equation (12). Positive values of AE cor-
respond to energy offer and negative values to purchase. Moreover,
the price difference C*(t) is defined by C*(t)=C'P(t) —CPA(t). As
expected, energy is purchased if C*(t) <0 and offered otherwise. For
C2(t) ~ 0, the traded energy volumes are close to zero. During the 17 to
21 h, the trading behavior does not follow the described mechanism and
the trading curve is fairly smooth. Again, we explain this exception by
the eNMPC terminal storage tank constraint in combination with the
strong holdup decrease scheduled by IDS, cf. Figure 9C. During this
period, the terminal constraint tracking exhausts all degrees of freedom
and thereby constrains the trading. For TEL-2, the additional profit from

arbitrage amounts to 3.3% of the nominal operating costs.
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5.4 | Shifted ID price scenario

In this second study, we consider two alternative price scenarios that
are modifications of the DA and ID profiles from the first study. The
first scenario, denoted by IDg, is obtained by a constant positive shift
of all ID prices such that the mean ID price is 5% higher than the mean
DA price. Similarly, we consider a price scenario ID o, where the mean

ID price is 5% below the mean DA price. We apply all operating

6 8 10 12 14 16 18 20 22 24
Time (h)

strategies to these two scenarios and collect the economic results in
Table 10. Since the DA profile does not change, the IDS and eNMPC-
DA results in Tables 7 and 8 remain valid.

First, we emphasize that we continue to compare against the SS-
DA-1500 reference. However, we additionally examine the counter-
part to SS-ID-1500 using IDg or IDg prices. Due to the generally
higher price level of IDg, we must expect a lower profit of eNMPC-ID
and TEL. Indeed, the costs for eNMPC-ID are shifted to positive
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TABLE 10 Results in the second and

Scenario & Scenario © third price scenarios. The percentages
Relative energy Relative energy state the relative deviation from the SS-

Operating DA-1500 reference.

strategy 7 (h) Demand (%) Costs (%) Demand (%) Costs (%)

Reference - +0.0 +0.0 +0.0 +0.0

SS-ID-1500 = +0.0 +5.0 +0.0 -5.0

ID-2 2 +1.8 +2.7 +2.2 -7.5

ID-3 3 +2.2 +2.0 +2.7 -84

ID-4 4 +2.2 +1.8 +2.7 -8.7

ID-6 6 +3.5 +0.9 +4.1 —9.6

ID-9 9 +4.6 +1.5 +4.8 -9.5

ID-12 12 +3.7 +0.7 +4.1 —-9.7

TEL-2 2 +4.8 -4.0 +4.9 -2.5

TEL-3 3 +4.4 —-4.1 +5.0 —-24

TEL-4 4 +4.3 —-4.1 +4.6 —-4.0

TEL-6 6 +4.3 —4.4 +5.0 —4.4

TEL-9 9 +4.5 -3.8 +4.9 -3.9

TEL-12 12 +4.4 —4.0 +4.7 —4.0

values, indicating higher expenses compared to the steady-state oper-
ation with energy products from the DA market. We observe 20.7%
cost increase over the stationary DA reference. As before, the long-
horizon eNMPC configurations realize better economic results than
short-horizon eNMPC. When compared to SS-IDg-1500, the
eNMPC-ID strategy, however, generates economic savings. In fact,
eNMPC-ID follows nearly the same operating strategy as before, only
on a higher price level. We provide the respective closed-loop trajec-
tories in the SI.

As opposed to stand-alone eNMPC-ID, the TEL strategy realizes
economic profit comparable to the first case study, despite the higher
price level of IDg. Moreover, the cost savings remain independent of
the TEL-eNMPC prediction horizon, wherefore we may use a short
horizon. Compared to SS-IDg-1500 the TEL cost savings are even as
high as 9.4%.

In the case of a systematic ID price shift in negative direction, the
savings are reversed. Due to the absence of a scheduling layer, stand-
alone eNMPC has no commitments regarding DA products and can
fully benefit from lower ID g prices. As a consequence, eNMPC gen-
erates up to 9.7% revenue compared to the SS-DA-1500 reference.
On the other hand, the energy volumes purchased on the DA market
constrain the economic profit of the TEL strategy. Yet, remarkably,
the TEL scheme continues to realize a benefit of up to 4.4% compared
to the SS-DA-1500 reference. We notice that a slightly longer TEL-

eNMPC horizon of 4 h is required here to realize savings of 4%.

5.5 | Overall comparison

We summarize the findings from the case study. Figure 11 extracts

the key trends from Tables 6 to 9 and compares the different

operating strategies in the first price scenario. In all cases, we see a
positive increase in energy demand, that is, flexible process operation
consumes more power than steady-state operation. At the same time,
the operating strategies achieve different profit, with single-layer IDS
providing little savings at the highest energy demand. The economic
profit from single-layer eNMPC strongly depends on the prediction
horizon and the availability of a reliable price forecast over this hori-
zon. Moreover, eNMPC-ID outperforms eNMPC-DA due to a stron-
ger variance in the ID profile compared to DA prices. We account the
dependence of profit on the prediction horizon to the price variance
rather than to the process dynamics. Figure 4 indicates that the
closed-loop settling time is ~2 h. In contrast, the principal frequency
of the price profiles in Figure 5is fo~1/12 ht, Consequently, a larger
horizon covers a larger price range to be leveraged in optimization.

The TEL scheme achieves similar savings as the long-horizon
eNMPC-ID configurations. At the same time, a significantly shorter
TEL-eNMPC prediction horizon z. than in single-layer eNMPC enables
similar savings. This finding is consistent with the above discussion as
the upper-layer TEL-IDS already covers the slower price trends at fo
and the TEL-eNMPC optimizes around this reference using the con-
siderably faster ID-DA deviations of principal frequency f; ~1/2 h?,
see Figure 5. Hence, a shorter horizon is sufficient. Notably, the major
share of economic profit is due to arbitrage, as clear from comparing
IDS and TEL in Figure 11. For further information on the principal fre-
quencies see References 45, 86.

A short eNMPC horizon is practically beneficial for two reasons.
First, a long horizon is generally associated with high online CPU costs
and computational delay. The comparison of the CPU costs of stand-
alone eNMPC and TEL-eNMPC in the Sl confirms this trend. As we
aim for fast control updates, we thus prefer short horizons. Second,

price prediction uncertainty generally grows with longer horizons,®”:%8

85U8017 SUOLULLOD BAIERID B|ed ! dde U} Ag peusnob 8. Sap1Le YO ‘@SN JO S9N 10} AXeig 1T 8UIIUO /8|1 UO (SUORIPUOD-PUR-SWR} WO B 1M ARe1q 1)U UO//SANY) SUORIPUOD PUE S L U3 885 *[5202/L0/9T] U0 ARIq1T8UIIUO 811 *BILBD LIRSS HALUD UD!INC WnuezsBunyasiod Aq TELGT 0R/Z00T 0T/I0pALI0D" A3] 1M ARIq1eu!|UOBLD /AN WOJj PopeojuMoq ‘9 ‘G202 ‘S06SLYST



SCHULZE ET AL AI?BII:'J RNAL 17 of 20
FIGURE 11 Relative cost savings and energy . oSS AIDS (DA) 0eNMPC-ID  +eNMPC-DA TEL
demand of single-economic-layer and TEL operating § 6 ;
strategies compared to steady-state operation. The time o A !
values indicate the eNMPC prediction horizon. % 5 !
o 1
£ 1
S 12h% 6h |
-U |
ﬁ 3 + |
: 4h_ 3h 9h |
< ° |
2 1
5 2n®  6h* |
Q 1
5 1 !
o ant 1 SS-1000
2 2h, O
L e GECEEEEE LR LT oo
< 1 SS-1500
B 5 1 -3 2 1 0 1

irrespective that herein we have assumed the exact knowledge of
future ID prices. In particular, for short eNMPC horizons we can
expect fairly reliable short-term ID forecast, whereas an eNMPC strat-
egy based on 12 h predictions may suffer from price uncertainty. We
thus regard the short eNMPC horizons in the TEL strategy as advan-
tage in regards of economic robustness. We will investigate this effect
more in-depth in future works.

In the second and third price scenarios, the TEL schemes proves
to be economically robust against systematic price shifts between the
DA and ID markets. At the same time, the economic performance of
stand-alone eNMPC-ID is more sensitive to the price differences due
to the sole dependency on the ID profile. As a result, stand-alone
eNMPC and TEL outperform each other in one scenario each. Clearly,
the commitment to DA energy products provides an economic fall-
back in the case of high ID prices, but also constrains the TEL revenue
in case of considerably lower ID prices. However, the TEL approach
succeeds to realize a nearly constant economic revenue in all scenar-
ios, whereas stand-alone eNMPC even results in a cost increase rela-
tive to the steady-state DA reference. Overall, TEL is the only scheme

that realizes savings in all price scenarios.

6 | CONCLUSIONS AND OUTLOOK

We propose an integrated scheduling and control approach with two
economic layers, termed TEL, for energy flexible operation of chemical
production processes. Therein, we combine dynamic scheduling and
eNMPC to profit from fluctuating energy prices and price differences
between DA auction and continuous ID markets. The approach unites
several advantages of the individual approaches. First, IDS is executed
offline and thus allows for long scheduling horizons, that is, planning
one or multiple days ahead, which is not computationally feasible for
stand-alone eNMPC. By considering “long-term” production goals,
IDS increases flexibility and provides an economically optimized oper-

ating trajectory. Second, employing lower-layer eNMPC enables

Relative cost difference (%)

economic disturbance rejection as well as rapid response to unex-
pected market fluctuations, thereby providing an advantage over
stand-alone IDS.

In a case study, we compared the proposed TEL scheme with
state-of-the-art single-layer approaches and demonstrated high sav-
ings and economic robustness of our method. For all methods, the
price differences in a moderate scenario constructed from historical
European price data were sufficient to incentivize DSM and intermit-
tently overproduce and store liquid gas product. In general, flexibiliza-
tion is associated with an increased energy consumption compared to
steady-state operation. At the same time, the strategies investigated
realize different revenues, with IDS and short-horizon eNMPC show-
ing the worst performance. The economic profit from single-layer
eNMPC strongly depends on a long prediction horizon, a reliable price
forecast, and the DA/ID price levels. Conversely, the proposed TEL
strategy consistently provides high savings in all price scenarios and is
therefore economically promising. By participating in two markets, the
TEL strategy enables the plant operator to benefit from arbitrage, that
is, buying on one market and selling on another. Importantly, the pre-
diction horizon of eNMPC in the TEL setup can be chosen consider-
ably shorter than in a stand-alone eNMPC application, whereby
computational tractability and price prediction accuracy may be con-
siderably improved.

In the present study, we did not investigate the effect of process
disturbances on the performance of the competing schemes. In fact,
unpredictable disturbances are rather uncommon for ASUs. Generally,
stand-alone eNMPC performs disturbance rejection within the regular
economic optimization. Conversely, a correction of the schedule in
IDS necessitates trading on the ID market to update the DA schedule.
The disturbance rejection features of eNMPC are inherited by the
TEL scheme. Performing economic disturbance rejection in the lower
layer of a two-layer economic scheme has already been discussed in
the literature.*”~*° However, in the case of infrequent but large dis-
turbances, a recomputation of the top-layer schedule over the longer

scheduling horizon may offer additional benefits.
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Future work should extend the approach to multi-product pro-
cesses and variable product grades. Using a “power-tracking NMPC”
instead of production rate tracking as well as reference trajectory
tracking instead of setpoint tracking may further improve the eco-
nomic performance of the scheme. Additionally, accounting for the ID
market in the day-ahead IDS problem as well as applying stochastic
ID price forecasting in either integration approach may enable further
benefits. Finally, modeling and optimization strategies for IDS with

hard-constrained lower-layer controllers are needed.
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