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Abstract

Integrated dynamic scheduling (IDS) and economic nonlinear model predictive control

(eNMPC) enable economic operation of chemical plants subject to volatile energy

prices. Herein, we combine the two concepts into an integrated two-layer scheme.

Therein, IDS performs “long-horizon” scheduling on a day-ahead (DA) market and

eNMPC “short-horizon” improvements on an intra-day (ID) market. A case study

demonstrates 5% economic savings over stationary operation. In contrast, stand-

alone IDS and eNMPC using DA prices reach 1% and 2.5% savings, respectively. We

identify arbitrage as the main driver generating the additional benefit. Additionally,

we compare our scheme to stand-alone eNMPC in three ID price scenarios, where

our approach consistently realizes savings of 5%. Conversely, eNMPC is price sensi-

tive with variable revenue between 1% higher costs and 10% savings. Finally, requir-

ing significantly shorter prediction horizons than stand-alone eNMPC, our approach

eases price forecasting and enhances real-time capability.
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1 | INTRODUCTION

Traditionally, the two disciplines of scheduling and control have been

considered as complementary but separate layers in hierarchical deci-

sion, each acting on different time scales. Over the past decades,

however, the economic potential of integrating these layers has

attracted a growing interest and numerous works have revealed a

considerable benefit of a joint treatment.1,2 The integration of sched-

uling and control is particularly advantageous in cases where the

scheduling horizon comprises a significant amount of transient

operation, that is, when scheduling decisions are made on the time

scale of process and control dynamics.3 Such transient operation

occurs, for example, when implementing hourly or sub-hourly load

changes to profit from electric energy spot markets in the context of

demand response (DR) or demand-side management (DSM).4,5 Under

these circumstances, time-scale separation of the hierarchical layers is

often no longer given and the de-facto interaction of the decision

layers degrades economic performance when disregarded.6,7

Intuitively, energy-flexibilization and DSM require certain process

design properties that allow for a flexible production. In this regard,

flexibility capability is not only limited by the mechanical robustness

of a process,8 but also by the ability to adapt the process topology toBoth first authors contributed equally to this work.
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(de)activate energy-intensive subprocesses,9,10 store (intermediate)

products,11,12 or vary purity grades.13 Herein, we restrict ourselves to

processes that inherently provide flexibility capacities and we focus

on the development of flexibility enabling operating strategies.

There are two paradigms for integrating scheduling and control,

referred to as “top-down” and “bottom-up” approaches.13 Both

approaches consider the dynamics of the controlled plant in their

decision making. Bottom-up strategies incorporate the scheduling task

into a (usually model-based) controller by equipping the controller

with an economics-driven cost function. The most prominent bottom-

up approach is economic nonlinear model predictive control (eNMPC),

that is, nonlinear model predictive control (NMPC) using an economic

cost function.14

The top-down paradigm,15,16 also referred to as integrated dynamic

scheduling (IDS) hereinafter, integrates the decision layers by taking

account of the open-loop or closed-loop plant dynamics in the schedul-

ing layer. Thereby, the hierarchical architecture of process automation

is preserved and the integration is addressed from the scheduling side.

Various formulations of IDS have been proposed, some of which explic-

itly account for the closed-loop behavior due to tracking control laws

by embedding the PID formula17,18 or MPC optimality conditions.19,20

Considering the control dynamics allows to respect (and even exploit)

the joint response of process and tracking controllers in the dynamic

scheduling of the production targets. Both top-down and bottom-up

strategies result in optimization programs that are computationally

expensive to solve. Various strategies to accelerate the solution have

been proposed. These include model reduction,11,21,22 decomposition

schemes,18,23,24 and surrogate modeling.25–27

Recently, we conducted a detailed comparison of the two para-

digms.28 While eNMPC promises a higher economic performance,

careful controller design is needed to limit control delay due to the

high computational expenses and to establish desired system prop-

erties such as stability.29 On the other hand, IDS has the advantage

of building upon an existing control infrastructure. Therein, the

lower-layer stabilizing tracking controllers are usually computation-

ally cheap and maintain the desired closed-loop properties. Clearly,

irrespective of the specific implementation of the top-down para-

digm, its overall performance strongly depends on the properties of

the lower-layer controllers. Overall, bottom-up and top-down

approaches have been considered as competing technologies for

achieving the same task.13,28,30

Numerous studies have investigated optimal DSM of electrified

chemical processes such as air separation units (ASUs)31–33 and chlo-

rine electrolysis.34,35 For recent reviews see Mitsos et al. 4 and Cegla

et al. .36 Moreover, different electricity markets have been considered,

in particular balancing reserve,37,38 day-ahead (DA) auction,39,40 and

continuous intra-day (ID).41,42 Additionally, economic benefits of

simultaneously participating in multiple energy markets (particularly

DA and ID markets) have attracted interest.40,43–45 Frequently, the

participation on multiple markets is considered as a two-stage prob-

lem in which the bidding proceeds in a sequential manner.42,46

Due to the different bidding and market clearing mechanisms, the

different control paradigms are not equally suitable for the DA and ID

auction and the continuous ID markets. In particular, the bidding and

clearing period of the DA and ID auction markets comprise 1 h

and 15 min energy products for the full next day, respectively. Hence,

auction markets are particularly well suited for a day-ahead schedul-

ing, that is, IDS. On the other hand, progressive short-term trading on

a continuous ID market fits well into the eNMPC framework. Here,

15 min energy products are traded in a “pay-as-bid” fashion. How-

ever, also in a day-ahead IDS strategy, major process disturbances

may trigger a re-computation of the schedule and necessitate energy

purchase on the continuous ID market.

Despite a plethora of works on flexible process operation, none

of the above articles on multi-market scheduling considers the

dynamic effects of process control while enabling trading between

different spot markets. Although there exist some strategies to com-

bine multiple economic automation layers,47–49 these approaches

consider a single market and are rather designed for a lower-layer

economic disturbance rejection. However, a strategy to harmonize

multi-market participation with an integrated process control system

is missing.

Herein, we combine the strengths of IDS and eNMPC into an

economically superior scheme. For the computationally cheap

implementation of IDS, we employ the concept of data-driven

scale-bridging models.17,25 We solve the respective IDS problem

to purchase hourly energy products on the DA market in a first

optimization stage. In the second stage, we employ eNMPC with a

short prediction horizon to improve and exploit the scheduling

decisions on the continuous ID market through real-time trading.

To limit the complexity of the scheduling problem, we do not

account for the (uncertain) ID market in the day-ahead scheduling

computations.

We provide a literature review of the two integration approaches

in Section 2 and develop an integrated automation hierarchy with two

economic layers in Section 3. Section 4 introduces the ASU case study

and presents the specific formulation of the scheduling problem. In

Section 5, we compare the proposed scheme to the standard inte-

grated frameworks and discuss the results. Finally, we draw conclu-

sions in Section 6.

2 | PROCESS OPERATION SCHEMES

We briefly review the state of the art on NMPC, eNMPC, and IDS.

Moreover, we discuss the concept of scale-bridging models and

present Hammerstein-Wiener models as a common empirical

input-output structure for scale-bridging modeling. All methods lay

the foundation for the hierarchical economic scheme proposed in

Section 3.

2.1 | Nonlinear model predictive control

A model predictive controller repeatedly solves an optimal

control problem on a sampling grid and implements the first control

move to operate the process.50 A common formulation of the control

problem reads:
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min
u

ð
T c

ℓðxðtÞ,uðtÞ,tÞ dt, ð1aÞ

s:t: M _xðtÞ¼ fðxðtÞ,uðtÞÞ , 8t� T c , ð1bÞ

xðt0Þ¼ x0 , ð1cÞ

xðtÞ�X , uðtÞ�U , 8t� T c , ð1dÞ

where T c ¼ ½t0,t0þ τc� represents the time domain with start time t0

and prediction horizon τc. Further, xðtÞ�ℝnx are the states, and

uðtÞ�ℝnu are the controls. The integral cost function with running

cost ℓ :ℝnx �ℝnu �ℝ!ℝ is minimized subject to a dynamic prediction

by Equation (1b), initial conditions in Equation (1c), and admissible sets

X and U of states and controls, respectively. The dynamics are repre-

sented by differential equations, wherein f :ℝnx �ℝnu !ℝnx . If the

matrix M�ℝnx�nx is singular, then we obtain a differential-algebraic

system of equations (DAE).

The optimal control problem (1) is resolved after each sampling

period Δts. Updating the current process states x0 �ℝnx introduces

feedback and is typically realized by a state estimator. Further, the

controls are parameterized as piecewise constant profiles of step

duration Δtu. Depending on the formulation of ℓ, we obtain a tracking

controller or an economic controller. Tracking NMPC (tNMPC) is typi-

cally realized by means of a quadratic running cost, for example:

ℓðxðtÞÞ :¼ðxðtÞ�xspÞTQxðxðtÞ�xspÞ, ð2Þ

where Qx is a positive semidefinite weighting matrix. Typically, the

tracking setpoint xsp �X is constant over the horizon (setpoint track-

ing NMPC), although using a reference trajectory may be advanta-

geous in the context of flexible operation (trajectory tracking NMPC).

Setpoints for the scheduling-relevant variables vschedðtÞ¼ hðxðtÞÞ,
where h :ℝnx !ℝnv , are provided by the superior scheduling layer. For

notational convenience, we use v¼ vsched,sp below. Then, a full vector

of consistent setpoints xsp is either obtained via steady-state optimi-

zation or circumvented by an adapted tracking cost function:

ℓðxðtÞÞ :¼ðhðxðtÞÞ�vÞTQvðhðxðtÞÞ�vÞ, ð3Þ

where Qv �ℝnv�nv is again positive semidefinite. Additional terminal

cost and constraints can be added to Equation (1) to establish recur-

sive feasibility and stability.51

Economic NMPC is obtained when specifying an economic cost

function, for example:

ℓðxðtÞ,uðtÞ,tÞ :¼PðxðtÞ,uðtÞÞ � CeðtÞ, ð4Þ

where P represents the power demand at a given operating point and

CeðtÞ is the variable energy price. Further, economic constraints can

be included in Equation (1). Again, additional cost terms or constraints

may be added to the control problem to establish properties such as

stability.14,29

2.2 | Integrated scheduling and real-time
optimization concepts

There are four strategies to realize the top-down paradigm for contin-

uous processes. In the literature, these strategies have been adopted

to both scheduling and real-time optimization (RTO) tasks. As we only

consider single-product plants here, we do not distinguish between

scheduling and RTO. Below, we provide a brief review of the

strategies.

2.2.1 | Transition tables

The first class of integration approaches equips the steady-state

scheduling model with dynamic ramping constraints to account for

the transition times between operating points.32,52–56 Due to the

quasi-stationary modeling, the scheduling problem remains relatively

simple, and the pre-computation of “transition tables” can be

decoupled from the scheduling calculations.57 However, the approach

relies on simple, for example, linear, transition profiles and completed

transitions between well-defined steady states. Both requirements

pose a considerable restriction to processes with distinct transients.

2.2.2 | Open-loop dynamic optimization

In order to rigorously account for the transient process behavior, the

optimization can be formulated as a dynamic scheduling or dynamic

real-time optimization (DRTO) problem, employing a mechanistic

multi-time-scale process model.58,59 In the context of DSM, the

approach was later adapted by several authors.3,5,11,60,61 Solving this

open-loop problem provides the reference trajectories for state and

controls to the lower-layer tracking controller, cf. Equation (2). How-

ever, this type of scheduling problem still represents a very idealized

perspective, where the closed-loop effects due to the tracking control

laws, plant-model mismatch, disturbances, and other factors are disre-

garded. In addition, the optimal schedule is relatively expensive to (re-

)compute. To address the computational aspect, low-order reduced

models may be constructed to capture only the scheduling-relevant

dynamics in the open-loop DRTO problem.6,42,62

2.2.3 | Closed-loop dynamic optimization

A tighter integration of the layers is achieved by embedding the control

laws as additional constraints into the DRTO problem, for example,

including the PID formula18 or lower-layer MPC algorithm.19,20,63,64

Thereby, the dynamic closed-loop (setpoint-to-output) process behavior

is explicitly accounted for in the scheduling computations. Since the

transient operating phases and associated control moves are captured

more realistically, this approach provides superior schedules.19,20,42

Kumar et al. 65 observed an analogue effect for the integration of base

layer control and supervisory control, where modeling the PID base

SCHULZE ET AL. 3 of 20
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layer dynamics in an MPC prediction model improved the overall

closed-loop performance in some cases.

From a system-theoretic perspective, embedding the (closed-

loop) tracking control law into the DRTO problem is the most rigorous

approach to layer integration. However, embedding an MPC algo-

rithm, that is, a sequence of MPC optimization problems, into the

scheduling program leads to highly complex bilevel programs. Such

scheduling programs are typically nonconvex and non-differentiable

due to complementarity constraints arising from the Karush-

Kuhn-Tucker conditions of constrained MPC problems. Despite first

results on input-constrained MPC,20,66,67 accounting for the closed-

loop behavior of output-constrained MPC remains an open research

problem towards the application of lower-level MPC. Moreover, dis-

turbing effects such as plant-model mismatch are difficult to capture

by this approach. At the same time, most of the information contained

in the lower-level problem is not relevant to the scheduling decision

making.25

2.2.4 | Low-order closed-loop dynamic optimization

The computational burden described in Section 2.2.3 can be lowered

by substituting the representation of the process under supervisory

tracking control by a reduced input-output model of the closed-loop

process response.17,25,68 Such low-order representations are termed

“scale-bridging models” (SBMs) and encapsulate the feedback struc-

ture of control law and dynamic plant response as visualized in

Figure 1. Another variant of this approach was presented by Du

et al. ,69 who parameterized the reference trajectory by a dynamic

model rather than capturing the closed-loop process response. We

regard their approach as a hybrid version of transition tables

and SBMs.

SBMs can be obtained through model reduction,69 empirical

model identification from closed-loop simulations,25 or techniques to

approximate the lower-level problem from the previous paragraph.64

Data-driven SBMs can also be directly identified using historical oper-

ating data from the plant.70 This last case does not require a detailed

plant surrogate and is inherently capable to account for plant-model

mismatch of a model-based controller. Finally, an SBM may be built as

a combination of mechanistic and data-driven submodels, that is, a

hybrid model (further details in Section 2.3).

SBM-based IDS may be able to compensate poor tracking behavior

to some extend, yet we cannot expect an overall high performance in

such cases. On the other hand, SBMs require updating if the

scheduling-relevant dynamics are altered, for example, through changes

made on the controller tuning. Further, the complexity of SBM identifi-

cation grows with the number of setpoint parameters, for example,

when using multiple setpoints or reference trajectories.

Closed-loop dynamic scheduling has been used extensively in the

recent literature and typically achieve economic savings between 1%

and 15% on day ahead market compared to stationary opera-

tion.25,28,67,71 In extreme cases, savings up to 50% have been

reported.19,72 We remark that cost savings strongly depend on the

chosen benchmark case and the price profile. Hence, a too conserva-

tive benchmark operating point may suggest higher than realistic sav-

ings due to a high power consumption reference.

In most works on IDS, tracking controllers without output con-

straints have been considered, which are characterized by a suffi-

ciently smooth closed-loop setpoint-tracking response.25 Conversely,

in the presence of hard output constraints, the closed-loop response

can be non-smooth and smooth SBMs are at best moderately accu-

rate. This observation is consistent with the discussion in

Section 2.2.3 and references cited therein. To improve the overall

constraint satisfaction, strict output (hard) constraints may be formu-

lated at the scheduling level. These (back-off) constraints are more

conservative than the controller constraints.70,73 Similar to control

law embedding, the identification of non-smooth SBM for processes

under output-constrained (N)MPC remains an open research problem.

Consequently, we herein limit ourselves to input-constrained

tracking NMPC.

2.3 | Scale-bridging models

We consider IDS using SBM as a practical compromise of complexity

and accuracy of the computations. Recall that an SBM describes the

dynamic response of the scheduling-relevant process variables y to

changes in the scheduling degrees of freedom v, that is, the setpoints

to the tracking controllers. For example, y may contain both the

energy consumption and the production rate. To formulate

the respective scheduling problem, we denote a generic SBM by:

0¼ fSBMðzðtÞ, _zðtÞ,yðtÞ,vðtÞÞ, ð5Þ

where zðtÞ are differential (data-driven) states of the SBM. Notice that

we may alternatively use a discrete-time model, for example, an auto-

regressive model.71 Herein, we consider a hybrid SBM combining

mechanistic and data-driven scale-briding submodels. In particular, we

employ mechanstic dynamic models of the scheduling-relevant prod-

uct storage tanks. On the other hand, the main production process is

captured by data-driven SBMs. Combing the submodels by means of
F IGURE 1 Integrated scheduling and control using scale-bridging
models (SBMs).

4 of 20 SCHULZE ET AL.
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complementary energy and mass balances yields an overall

hybrid SBM.

Different types of data-driven SBMs have been used in the litera-

ture, including linear17,68,69 and block-structured25,74 models.

Hammerstein-Wiener (HW) models represent a good compromise

between a simple structure and reliable long-term forecasts.75 In addi-

tion, strategies to exploit the nonlinear HW block structure in dynamic

optimization are known.74,76,77 Consequently, we adopt

Hammerstein-Wiener models as data-driven SBMs here. Single-input

single-output (SISO) HW models can be stated in continuous-time

state-space representation as follows:

_zðtÞ ¼ AzðtÞþBfHðvðtÞÞ , zð0Þ¼0 , ð6aÞ

yðtÞ ¼ fW CzðtÞþDfHðvðtÞÞð Þ , ð6bÞ

where vðtÞ�ℝ is the single SBM input (i.e., subprocess control set-

point), fH :ℝ!ℝ is the nonlinear (Hammerstein) input map, and

fW :ℝ!ℝ is the nonlinear (Wiener) output map. Different function

types can be used for the nonlinear blocks, such as piecewise linear,

polynomials, sigmoid networks, and ANNs.28,75,77 Further, A�ℝn�n,

B�ℝn�1, C�ℝ1�n, and D�ℝ1�1 are linear system matrices. In the

case of multiple scheduling-relevant variables yi, several SISO models

are used. HW models can be identified from recorded plant data or

closed-loop simulation records through a system identification tool-

box, for example, MATLAB.

2.4 | Formulation of dynamic scheduling problem
using SBM

The generic form of the IDS-DRTO scheduling problem with SBM

embedded reads:

min
vðtÞ � V

ð
T s

PðtÞ � CeðtÞ dt

s:t: 0 ¼ fSBM zðtÞ, _zðtÞ,yðtÞ,vðtÞð Þ,PðtÞ¼ y1ðtÞ,
0 ≥ cðyðtÞ,CeðtÞ,tÞ, t� T s:

ð7Þ

Therein, T s ¼ ½0,τs� is the scheduling time domain and v : T s !ℝ are

the scheduling degrees of freedom, for example, controller setpoints.

We assume a piecewise constant parameterization of v in an admissi-

ble set V. The running cost is similar to Equation (4) but additional cost

terms may be added. The power demand PðtÞ is assumed to be the

first output of the scale-bridging model and CeðtÞ is the electricity

price. Finally, c is a generic map to represent path and point

constraints.

Solving the IDS problem (7) provides optimal controller setpoints

v ? ðtÞ. Since we focus on scheduling for DSM of continuous single-

product plants, we do not consider multi-product scheduling,70,78 vari-

able product grade, or flexible production order.79 Furthermore, while

the scheduling problem involves a sequence of setpoints, these are

only successively given to the controllers, that is, the lower-layer

controllers are setpoint tracking controllers given a single setpoint,

v ? ðtÞ, rather than reference trajectory tracking controllers. The exten-

sion of the proposed method by these aspects is left for future

investigations.

Irrespective of the type of tracking controller, some of the operat-

ing constraints may be economically critical and should therefore be

incorporated as scheduling constraints. One common example is prod-

uct quality, where on the one hand over-purification curtails economic

benefit and on the other hand quality violations (under-purification)

result in production losses.80 Adding such economically critical quanti-

ties as scheduling constraints or even setpoints may hence enable an

extra economic profit.

3 | TWO-LAYER SCHEDULING AND
ENMPC SCHEME

As previously discussed, the competing paradigms IDS and eNMPC

are practically most suited for different types of energy markets.

Hence, we propose to combine the two strategies into an integrated

two-economic-layers (TEL) scheme. We introduce the basic concept

in Section 3.1 and provide a mathematical formulation in Section 3.2.

3.1 | Basic concept

The TEL strategy combines the top-down and bottom-up paradigms

and is visualized by Figure 2. In the top economic layer, we employ

IDS to participate in an auction market. To keep the scheduling prob-

lem simple, we do not include the uncertain continuous ID market at

this stage but perform a pure DA scheduling. In the subordinate eco-

nomic layer, eNMPC is used for process control and for short-term

economic improvements on a continuous trading market, that is, con-

tinuous ID market.

The automation layers are integrated as follows. Similar to stand-

alone IDS, the top-layer scheduling employs an SBM of the process

under supervisory (economic) control. However, as we do not con-

sider the ID market at this stage, the economic controller(s), here

F IGURE 2 Proposed TEL scheme for integrated scheduling and
control with electricity arbitrage.

SCHULZE ET AL. 5 of 20
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eNMPC, acts as an energy tracking controller with no degrees of free-

dom for economic optimization. Solving the IDS provides a power

consumption reference and process variables schedule to the eNMPC.

The eNMPC optimizes a prediction model of the process and

base-layer controllers.65 Given the IDS power reference, the eNMPC

generates further economic profit by performing real-time economic

corrections through trading on a continuous market, here ID market.

These improvements are absent a conventional top-down approach,

where tracking controllers realize process operation according to the

schedule. In contrast, TEL-eNMPC is able to exploit short-term fluctu-

ations in the energy price over the prediction horizon by purchasing

or offering energy volumes. This mechanism is called arbitrage and

further discussed in the case study below.

Intuitively, economic improvements from such a TEL strategy will

grow with increasing differences in the prices on the two markets, as

long as temporal price deviations occur in both directions, that is, we

can switch between buying and selling energy products. Thereby, an

additional economic benefit over classic IDS is realized through arbi-

trage. An approximately zero-mean difference between DA and ID

prices, that is, a balanced positive and negative deviation, is very com-

mon and thus a legitimate assumption.81 Based on the procedure and

frequency of DA market clearing, for example, every 24 h on EPEX

Spot market, the IDS calculations are performed rather infrequently.

Conversely, eNMPC optimizations are executed recursively at the

controller frequency, for example, seconds to minutes. Here, the pro-

cess state as well as the ID prices are updated at every sampling

point.

An important property of the TEL structure is that the eNMPC

prediction horizon can be relatively short compared to a stand-alone

eNMPC application. Specifically, the prediction horizon only needs to

be long enough to control the process and contain a sufficient amount

of positive and negative deviation of the ID price from the DA price

to benefit from market deviations. As discussed by Germscheid

et al. 45 and Papadimitriou et al. ,81 the principal frequencies of such

market deviations are in the range of 0:5 h�1 to 2 h�1. Hence, we can

expect that short eNMPC horizons spanning a few hours are suffi-

cient, which is a major advantage of our TEL strategy. In particular,

the long prediction horizons needed in stand-alone eNMPC imple-

mentation constitute a major computational obstacle to practical

eNMPC applications.82

3.2 | Mathematical formulation

The task is a two-stage optimization problem with each stage corre-

sponding to an economic layer. At the first stage (top layer), we com-

pute an optimal schedule by solving Equation (7). Therein, the SBM

encapsulates the closed-loop dynamic response of the process and

economic controller. We only consider DA spot market at the first

stage and assume that CDA is known.

The key observation for constructing a corresponding SBM is that

an economic controller behaves like a tracking controller when

restricted to a fixed power and production schedule with no freedom

for economic decision making. This observation simplifies the closed-

loop data collection and SBM identification considerably. In fact, we

may simplify the problem further by embedding the SBM of a setpoint

tracking controller into the IDS problem, provided that the optimal

values v ? ðtÞ constitute a feasible reference for the economic control-

ler in the lower layer. For example, this requirement is fulfilled for set-

point tracking NMPC and eNMPC with identical setup except for the

cost function. Since an SBM of setpoint tracking NMPC is easier to

obtain, we pursue this strategy here.

At the second stage, we repeatedly solve an eNMPC problem in

closed-loop operation. Here, the eNMPC can operate the process

more freely than tNMPC by purchasing additional energy on the ID

market and no strict ASU production schedule. Only a reference pro-

file of already purchased energy is provided by the upper scheduling

layer. However, we must include additional requirements and eco-

nomic constraints to the eNMPC problem, going beyond a tNMPC

formulation. In particular, to fulfill the power consumption commit-

ment, the hourly DA energy products must be consumed by the pro-

cess or sold on the ID market. Further examples of economic

constraints include: i) limits on the amount of energy traded on the

continuous market, ii) endpoint constraints on the eNMPC prediction

horizon (e.g., total production or quality as scheduled), and iii) fixed

time point constraints (e.g., an end-of-the-day constraint on the pro-

cess inventories).

We formulate the eNMPC optimization problem as a variant of

Equation (1) by specifying the economic stage cost:

ℓðxðtÞ,uðtÞ,tÞ¼ΔPðxðtÞ,uðtÞ,tÞ � CIDðtÞ: ð8Þ

Therein, CID is the energy price on the continuous ID market and ΔP

describes the deviation of energy consumption from the IDS schedule,

that is, ΔPðxðtÞ,uðtÞ,tÞ¼PðxðtÞ,uðtÞÞ�PIDSðtÞ, where PIDSðtÞ is the pro-

cess power consumption as scheduled and purchased due to IDS.

Since IDS considers DA prices, we use PIDSðtÞ and PDAðtÞ interchange-
ably. The deviation ΔPðtÞ reflects the power purchased (ΔPðtÞ>0) or
sold (ΔPðtÞ<0) on the ID market, wherefore PIDðtÞ¼ΔPðtÞ. Hence, for

PID �0 the IDS schedule is tracked exactly, that is, eNMPC acts as a

“power tracking controller”.

4 | CASE STUDY

We assess the performance of the TEL operating strategy on the

nitrogen-product ASU with product storage from Caspari et al. ,28

shown in Figure 3. The ASU is composed of the main air compressor

(MAC), two plate-fin multi-stream heat exchangers (PHX1, PHX2),

two turbines (TURB1, TURB2), a high-pressure distillation column

(HPC) with heat-integrated reboiler and condenser (IRC). The product

storage system includes a liquefaction unit, a storage tank, and an

evaporator.

The scheduling-relevant variables (SRVs) for IDS and eNMPC are

the ASU production rate Fasu, the molar fraction of impurities in the

product Iasu, the product demand Fdem, the power intake of the main
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compressor Pmac, and the power output of the two turbines Pturb1 and

Pturb2. Moreover, the power consumption of the liquefier Pliq and the

input and output flow rates of the storage tank Ftank,in and Ftank,out are

SRVs. The temperature difference ΔTirc between reboiled and con-

densed medium in the IRC is control relevant but not scheduling rele-

vant as we discuss below. Finally, the tank levels of reboiler Nirc and

storage unit Ntank have integrating behavior and must therefore be

controlled, with Ntank also being scheduling relevant.

The control inputs of the process are the molar flow rate of the

feed air stream Fmac, the split fraction ξturb of air flow into the turbine,

the split fraction ξliq of the product stream into the liquefier, the reflux

fraction ξtop, and the liquid drain from the reboiler Fdrain. The product

demand Fdem is met by mixing gaseous product from the ASU and

evaporated product from the storage tank. We do not consider the

product storage system as part of the ASU. Instead, we treat the ASU

and storage system as two connected subsystems. While IDS and eco-

nomic NMPC optimize the total system, tracking NMPC only deals

with the ASU subsystem.

In nominal operation, the ASU produces 20 mol/s nitrogen prod-

uct at 1500 ppm impurity content. The corresponding power demand

is Pasu ¼296:8 kW. Further, the process inventories are Nirc ¼25 kmol

and Ntank ¼1728 kmol and defined as 100%. The nominal storage tank

holdup corresponds to a full-day production volume. We assume that

the process is initially at its nominal operating point.

4.1 | Implementation

The scheduling and control framework is implemented in Python 3.6

and employs our open-source dynamic optimization framework

DyOS.9 Therein, DyOS combines the DAE integrator NIXE83 and NLP

solver SNOPT.84 We specify an optimality tolerance of 1E-4,

feasibility tolerance of 1E-3, and integration tolerances of 1E-5. The

full-order model and SBMs are written in Modelica and accessed

through a Functional Mock-up Interface. All computations are exe-

cuted on a server with Intel®Xeon®E5-2640 v3 CPU @ 2.60 with

128 GB RAM.

4.2 | Top-down IDS

The degrees of freedom in the IDS problem are the manipulated vari-

ables of the storage system as well as the ASU production rate set-

points Fasu,sp transmitted to the tNMPC. Before formulating the IDS

problem, we present the tNMPC setup and the resulting SBM.

4.2.1 | Tracking NMPC

We formulate the tNMPC based on Equation (1) using the full-order

dynamic model of the ASU subsystem in combination with quadratic

tracking cost:

ℓð � Þ ¼ω1 � ðFasuðtÞ�Fasu,spÞ2þω2 � ðIasuðtÞ� Iasu,spÞ2

þω3 � ðΔTircðtÞ�ΔTirc,spÞ2þω4 � ðNircðtÞ�Nirc,spÞ2,
ð9Þ

where ωi are constant weights and the constant setpoints of the con-

trolled variables (CVs) are indicated by “sp”. The production rate set-

point Fasu,sp may change between tNMPC optimizations, whereas the

other setpoints are generally fixed. The manipulated variables (MVs)

are u¼ ½Fmac,ξturb,ξtop,Fdrain�T . We employ piecewise constant controls

of Δtu ¼5textmin duration and do not penalize the magnitude of step

changes. Table 1 collects the tNMPC weights, setpoints, and input

constraints. To enable flexible operation rather than (inflexible)

F IGURE 3 Schematic representation of the ASU, adapted from Caspari et al. .28 MVs in blue, SRVs in green, and CVs framed in orange.
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constraint tracking, the impurity setpoint of 1000ppm is below the

maximum 1500ppm.

We do not impose any state or output constraints because such

constraints can result in a nonsmooth closed-loop response and thus

prohibit the application of HW SBMs. Including such constraints will

require further research within future works. Finally, process feedback

is realized by means of full state feedback.

4.2.2 | SBM identification

We generate an identification data set comprising the response of the

SRVs of the ASU under tNMPC to step changes in the production rate

setpoint Fasu,sp. To this end, we initialize the ASU at 1000ppm product

quality and generate a random sequence of setpoints, Fasu,sp � ½15,25�,
on a 72 h horizon. The training data set combines slow and fast set-

point step changes of 3.75 and 0.25 h duration, respectively, to

account for both slow and fast process dynamics. In a similar fashion,

we construct a test data set of 10 h duration, comprising 1 and 0.25 h

steps in the production setpoint.

The ASU production rate Fasu as well as the ASU power demand

Pasu are both SRVs. Furthermore, an investigation of the identification

data set reveals that the product impurity Iasu temporarily exceeds the

targeted impurity limit of 1500ppm. Recall that our tracking NMPC is

merely input-constrained, wherefore such a high impurity is not

infeasible from the NMPC perspective. However, due to quality

requirements, the product impurity is scheduling-relevant and will be

hard-constrained in the scheduling problem. Since all other CVs of

tNMPC do not exceed the operating limits in the identification data

set, we assume that these are uncritical and not scheduling relevant.

We scale the training data to the value range ½0,1� and use the

MATLAB 2023 System Identification Toolbox to generate HW models

for all SRVs. For the model selection, we perform training over a wide

selection of hyperparameters (e.g., type of nonlinearities, order of lin-

ear dynamics) and select the model with the lowest normalized Akaike

criterion (nAIC), similar to.75 The types of nonlinearities examined are

polynomials, sigmoid networks, ANNs, DNNs with the hyperbolic tan-

gent and sigmoid activation functions. After training, the resulting

model is validated on the test data set. The resulting models use poly-

nomials (Fasu, Iasu) and ANNs (Pasu) for the nonlinear blocks, and fifth

to eighth order of linear dynamic blocks. Table 2 lists the train and test

accuracy of the models in terms of the normalized root mean squared

error (NRMSE). The values are comparable to Pattison et al. 25 and

Tsay et al. .70

Figure 4 depicts model testing for the impurity and power predic-

tion. Therein, the transients of the closed-loop response to tNMPC

setpoint changes are clearly visible, supporting the application of a

dynamic SBM. Despite some deviations, both SBMs capture the major

dynamic trends. Detailed information on the identification is provided

in the SI.

4.2.3 | IDS problem formulation

Combining the SMBs with a mechanistic model of the product storage

systems results in a hybrid process model and the upper-layer IDS-

DRTO problem (7) becomes:

min
Fasu,sp, ξliq

ð
T s

PasuðtÞþPliqðtÞ
� �

� CDAðtÞ dt, ð10aÞ

s:t: FasuðtÞ ¼ fHW,1ðt,Fasu,spÞ , ð10bÞ

PasuðtÞ ¼ fHW,2ðt,Fasu,spÞ , ð10cÞ

IasuðtÞ ¼ fHW,3ðt,Fasu,spÞ , ð10dÞ

_NtankðtÞ ¼ Ftank,inðtÞ�Ftank,outðtÞ , ð10eÞ

Ftank,inðtÞ ¼ ξliqðtÞ �FasuðtÞ , ð10fÞ

PliqðtÞ ¼ f liq ξliqðtÞ �FasuðtÞ
� �

, ð10gÞ

FdemðtÞ ¼ ð1�ξliqðtÞÞ �FasuðtÞþFtank,outðtÞ , ð10hÞ

vðtÞ �V , yðtÞ�YðtÞ , zðtÞ�ZðtÞ , ð10iÞ

where τs ¼24 h. Equations (10b) to (10d) are the data-driven SBMs

initialized at the nominal operating point, Equations (10e) to (10g)

describe the storage system, and the path equality constraint in

Equation (10h) determines Ftank,out and ensures that the product

demand is met. Equation (10i) represents the path and endpoint

TABLE 2 SBM identification results.

Variable Train fit Test fit

Fasu 99.65% 99.56%

Pasu 91.04% 89.19%

Iasu 71.90% 85.62%

TABLE 1 Controller tuning of tNMPC.

Variable Unit Type Weight (ωi)

Values

(SP or MV)

Fasu mol/s CV 1.0 ½15,25�

Iasu ppm CV 0.003 10

ΔTirc K CV 10�5 2.5

Nirc % CV 10�4 100

Fmac mol/s MV — ½30,55�

Fdrain mol/s MV — ½0,2�

ξturb — MV — ½0,0:1�

ξtop — MV — ½0:51,0:54�
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constraints as detailed in Table 3. The periodic endpoint constraint on

Ntank guarantees that the storage tank is only used to balance tempo-

ral over- and underproduction but not systematically drained

over a day.

The two scheduling variables, v¼ ½Fasu,sp,ξliq�T, are parameterized

as piecewise constant functions of fixed step length. Preliminary

experimentation with the value grid of Fasu,sp suggested that 1 h

intervals are a suitable choice, matching with the 1 h energy prod-

ucts on the DA market. On the other hand, 20min intervals are

used for ξliq.

4.3 | Bottom-up eNMPC

The stand-alone eNMPC uses a full-order model of the total process

(ASU + storage system) and an economic cost similar to

Equation (10a), where the running cost:

ℓð � Þ¼ ðPasuðtÞþPliqðtÞÞ � CeðtÞ: ð11Þ

Since the DA market clearing and eNMPC time horizon generally do

not harmonize, an eNMPC based on DA prices, CeðtÞ¼CDAðtÞ, is

purely hypothetical and only considered for comparison. Besides this

hypothetical benchmark, we use continuous ID prices CIDðtÞ, being a

more realistic scenario for stand-alone eNMPC.

The MVs include all control inputs of the process, that is, Fmac,

ξturb, ξtop, Fdrain, and ξliq. The CVs comprise all economically and

control-relevant variables, see Table 4. We formulate path and point

constraints on the MVs and CVs and provide the respective sets in

Table 4. In particular, we formulate prediction horizon endpoint con-

straints on the tank inventories to recover the nominal values. This

endpoint constraint ensures recursive feasibility of the control pro-

gram. Additionally, we include end-of-the-day point constraints on

the tank inventories to prevent tank draining. Besides optimizing more

degrees of freedom than tNMPC and IDS-DRTO, the eNMPC prob-

lem also involves the larger number of constraints. The sampling time

is Δts ¼5 min in all cases. Further, we implement full state feedback.

(A) (B)

F IGURE 4 Testing of the identified SBMs. (a) Product impurity, (b) ASU power demand.

TABLE 3 Constraints in IDS-DRTO problem.

Variable Unit Value set Time set

Iasu ppm [0,1500] T s

Ftank,in mol/s ½0,10� T s

Ftank,out mol/s ½0,10� T s

Ntank % ½0,200� T s

Ntank % f100g fτsg

Fasu,sp mol/s ½15, 25� T s

ξliq — ½0,1� T s

TABLE 4 Input and state constraints in eNMPC problem. Current
time t0 and prediction horizon τc determine the prediction time
domain T c ¼ ½t0,t0þ τc�

Variable Unit Type Value set Time set

Fasu mol/s CV ½15,25� T c

Iasu ppm CV [0,1500] T c

ΔTirc K CV [1,5] T c

Nirc % CV [20,160] T c

Nirc % CV f100g ft0þ τc,24 hg

Ftank,in mol/s CV ½0,10� T c

Ftank,out mol/s CV ½0,10� T c

Ntank % CV ½0,200� T c

Ntank % CV f100g ft0þ τc,24 hg

Fmac mol/s MV ½30,55� T c

Fdrain mol/s MV ½0,2� T c

ξturb — MV ½0,0:1� T c

ξtop — MV ½0:51,0:54� T c

ξliq — MV ½0,1� T c
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4.4 | Two-layer IDS and eNMPC

We implement the TEL scheme as described in Section 3. Since we

employ the SBM under tracking NMPC, the upper-layer scheduling

problem (TEL-DRTO) is identical to Equation (10). Solving the TEL-

eNMPC problem yields the scheduled power consumption

PDAðtÞ¼PDA
asuðtÞþPDA

liq ðtÞ. The lower-layer eNMPC (TEL-eNMPC) is an

extended version of the stand-alone eNMPC described in the previ-

ous section. Specifically, we use the economic running cost:

ℓð � Þ¼PDAðtÞ � CeDAðtÞþΔPðtÞ � CeIDðtÞ, ð12Þ

where ΔPðtÞ¼PasuðtÞþPliqðtÞ�PDA
asuðtÞ�PDA

liq ðtÞ captures the deviation

from the power schedule. Further, we modify the constraints on the

storage tank level Ntank as stated by Table 5. Constraint (iii) ensures

that TEL-eNMPC optimizes around the scheduled reference, NDA
tankðtÞ,

instead of targeting the nominal level at the end of each eNMPC

optimization.

4.5 | Definition of operating scenarios

We compare the proposed TEL strategy to the single-layer eNMPC

and IDS approaches. Besides evaluating the economic revenue, we

contrast the operating strategies with respect to practical aspects.

Specifically, we examine different tNMPC and eNMPC prediction

horizons ranging from 2 to 12 h for all methods.

As a base case and benchmark, we consider nominal steady-state

operation of the ASU subject to DA and ID prices. This nominal oper-

ating point is the optimal steady state with minimum power demand

at 20 mol/s production rate at 1500 ppm purity grade. We consider a

scheduling horizon of 24 h length and hence use single-day DA and

ID price profiles. To avoid issues with a shrinking horizon at the end

of the day, we define a periodic scenario, that is, all prices repeat

after 24 h.

We use the DA and ID price scenarios from our recent publica-

tion.81 To represent the ID price, we select the ID3 index, which is the

volume-weighted average price of all trades that took place within

the last three hours before delivery.85

The DA and ID price scenarios comprise 24 h and are constructed

based on historical data of European spot markets. The DA and ID

profiles are constructed through an averaging scheme, which includes

an ID baseline correction to ensure that the 24 h cumulative price dif-

ference between DA and ID profiles is zero-mean distributed.81 Align-

ing the ID and DA profiles in this way improves comparability and

generalizability of the results. The resulting price scenario is shown in

Figure 5 and additionally provided via Git.*

In addition to this first case, we consider two price scenarios with

non-matching mean price of the DA and ID profiles. Here, the ID

prices are jointly shifted such that the mean ID price lies 5% above

the DA mean, that is, at 99.93 €/MWh, and 5% below, that is, at

90.42 €/MWh, respectively. These shifts are realistic given the his-

toric distribution of ID/DA deviations.81 Apart from the shift, the ID

profiles have the same shape as in Figure 5.

5 | RESULTS AND DISCUSSION

In Section 5.1, we assess the economic revenue of an optimal steady-

state operation subject to the different price profiles and different

product purity grades. Section 5.2 discusses the results from the

single-layer IDS and eNMPC strategies. Subsequently, we compare all

results to the proposed TEL approach in Section 5.3. Lastly, we inves-

tigate the effect of a systematic ID price shift in Section 5.4. In the SI,

we provide further material such as a collection of all results in a sin-

gle table and additional plots.

5.1 | Optimal steady-state operation

We list the steady-state operating scenarios in Table 6. In this case

study, scenario SS-DA-1500 is used as the reference case. Therein,

the product quality is at its upper 1500 ppm impurity limit and the

ASU production rate is 20 mol/s. The total energy demand over

the full day is 7.12 kWh and the associated costs according to the DA

prices are 677.94 €. Hereinafter, we compare all other strategies

against this reference and provide the relative deviation of energy

TABLE 5 Modified constraints in TEL-eNMPC. All other
constraints are identical to Table 4.

Variable Unit Type Value set Time set

(i) Ntank % CV ½0,200� T c

(ii) Ntank % CV f100g f24 hg

(iii) Ntank % CV fNids
tankðt0þ τcÞg ft0þ τcg

F IGURE 5 DA and ID price profiles. The average price of both
profiles is 95.18 €/MWh.

*Link: https://git.rwth-aachen.de/avt-svt/public/representative-electricity-price-profiles

(nominal daily profiles).
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demand and costs in %. Since the DA and ID price profiles feature the

same 24 h average price of 95.18 €/MWh, the results of SS-DA-1500

and SS-ID-1500 are identical.

In previous studies,25,28 a steady state at 1000 ppm purity

grade was considered as the nominal operating point due to con-

straint tracking limitations of linear MPC. This scenario corre-

sponds to SS-DA-1000. As expected, an operation at higher

product purity is associated with an increased energy consumption

of 0.4%. Therefore, choosing an operation strategy able to operate

the process close to its operating limits, for example, NMPC, is

clearly economically advantageous even in the stationary case.

Also, choosing a conservative benchmark such as SS-DA-1000 will

render any proposed operating scheme seem more economical.

Here, we challenge ourselves by selecting SS-DA-1500 as the

nominal operating scenario.

5.2 | Single-layer strategies

We compare the top-down and bottom-up strategies, that is, IDS and

eNMPC, respectively. We begin with an examination of the IDS

results and place the findings in a process and problem context.

5.2.1 | IDS using tNMPC

Table 7 summarizes the energy consumption and economic perfor-

mance. We distinguish two subcases. First, we consider the expected

savings as given by solution of the IDS-DRTO problem (10). However,

due to model errors of the SBM, the cost savings are lower when

applying the schedule to the process (IDS-tNMPC, i.e., closed-loop

results). Notice that the tank holdup at the end of the day reaches a

slightly too low value in closed-loop operation due to scheduling

errors. We account for this violation by adding the cost and energy

needed to compensate for the missing product based on the SS-DA-

1500 production costs.

Generally, the application of IDS realizes economic savings. Fur-

ther, the respective values of IDS-DRTO and IDS-tNMPC are compa-

rable. However, while the energy demand increases by approx. 5%,

the economic revenue is relatively small, at a cost reduction only

around 1%. Due to the less conservative steady-state benchmark and

the moderate DA price profile, the savings achieved by the IDS

strategy are less pronounced compared to Pattison et al. 25 and

related works.

The closed-loop trajectories of the process under IDS and tNMPC

are shown in Figure 6. In Figure 6A, we observe ASU production rates

above the nominal production during periods of low electricity prices.

Conversely, the production rate is reduced during high-price hours.

Notably, while different intermediate production rates between

20 and 25 mol/s are observed, a decrease of the production rate is

almost exclusively realized through a step to the 15 mol/s lower limit.

The behavior is consistent with previous studies25 and the periods of

over- and underproduction are balanced. The presence of a noticeable

share of nominal operation is explained by the high energy demand of

liquefaction, introducing an economical threshold for overproduction

and storage.

The product storage strategy is also visualized by Figure 6C. Inter-

estingly, the tank is used for storage but never drained below the initial

holdup of 100% reference storage, that is, 1.728 Mmol. The maximum

storage during the scheduling period isþ6:4% at 17 h. Hence, a consid-

erably smaller storage tank may be designed in practice.

Figure 6B depicts the total power consumption of ASU and stor-

age system. The steps associated with an increased production, that

is, 2 to 4 h and 11 to 16 h, include the activation or deactivation of

the liquefaction system. Therefore, deviations from the nominal

power demand are asymmetric. Moreover, Figure 6D confirms that

IDS is able to satisfy the product quality constraint. Due to the over-

estimation of the product impurity by the SBM, see also Figure 4A,

the upper bound is never reached.

5.2.2 | ENMPC

Next, we assess single-layer eNMPC in combination with either DA or

ID prices. To this end, we investigate different prediction horizon τc

as listed in Table 8. We adjust the control step lengths Δtu to obtain a

degree of freedom (DOF) of the same magnitude in all control prob-

lems. Thereby, we limit the computational effort of eNMPC. The max-

imum value of Δtu ¼15 min agrees with the MV parameterization in

previous works.28,82 In Schäfter et al. ,41 the authors even

used Δtu ¼60 min.

We begin with eNMPC using DA prices. As seen in Table 8,

single-layer eNMPC with a short prodiction horizon below 6 h only

TABLE 6 Results of steady-state operation.

Operating Price Iasu
Relative energy

strategy profile (ppm) Demand (%) Costs (%)

Reference

(SS-DA-1500)

DA 1500 ±0.0 ±0.0

SS-ID-1500 ID 1500 ±0.0 ±0.0

SS-DA-1000 DA 1000 þ0:4 þ0:4

TABLE 7 Results of (top-down) IDS with subordinate tNMPC.
The percentages state the relative deviation from the SS-DA-1500
reference.

Operating Price
Relative energy

strategy profile Demand (%) Costs (%)

Reference DA ±0.0 ±0.0

IDS-DRTO DA þ5:1 �1.2

IDS-tNMPC DA þ5:5 �0.8
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generates a profit below 1%. For longer prediction horizons, eNMPC

outperforms IDS, while having a lower power demand. The results

suggest that profit primarily depends on the prediction horizons and

increases with τc. In addition, we suspect a correlation of DOF

and energy demand, where energy demand reduces with higher DOF.

Figure 7 visualizes key closed-loop trajectories of the process

operated by eNMPC using DA prices. As visible in Figure 7A, short-

horizon eNMPC (DA-2) does not excite the system notably around

the nominal operating point, which is also reflected in the total power

consumption, see Figure 7B, and storage tank holdup in Figure 7C.

The short-term excitation as present for DA-2 is likely to stress pro-

cess equipment but does not realize an economic profit. Clearly, the

combination of short prediction horizon and slow DA price trends is

ineffectual.

On the other hand, long-horizon eNMPC (DA-12) accomplishes a

significant economic benefit by operating the process flexibly and mak-

ing use of a large part of the admissible operating range, Figure 7A.

Similar to IDS, the process is operated around the nominal production

rate of 20 mol/s and there exist distinct periods of non-nominal opera-

tion, visible in Figure 7A,B. However, we observe a larger share of

intermediate production rates between the lower and upper limit that

are incrementally changed between short periods. This behavior was

also observed by Caspari et al. 28 and is explained by the shorter control

intervals and online feedback to the economic controller.

While DA-2 operates the process near the upper impurity limit,

DA-12 intermediately drives the process to higher product purity.

There, over-purification is seen during periods of underproduction,

while reaching 1500 ppm when increasing production as well as at

(A) (B)

(C) (D)

F IGURE 6 Closed-loop process response under IDS and tNMPC. (a) ASU production rate, (b) total power consumption, (c) storage tank
holdup, (d) product quality.

TABLE 8 Results of (bottom-up) eNMPC using DA or ID prices.
The percentages state the relative deviation from the SS-DA-1500
reference.

Operating T c Δtu DOF
Relative energy

strategy (h) (min) per MV Demand (%) Costs (%)

Reference — — — ±0.0 ±0.0

DA-2 2 5 24 þ0:1 �0.1

DA-3 3 5 36 þ0:8 �0.3

DA-4 4 7.5 32 þ0:9 �0.5

DA-6 6 7.5 48 þ1:9 �1.5

DA-9 9 15 36 þ3:0 �2.0

DA-12 12 15 48 þ2:7 �2.4

ID-2 2 5 24 þ1:9 �2.4

ID-3 3 5 36 þ2:5 �3.1

ID-4 4 7.5 32 þ2:5 �3.5

ID-6 6 7.5 48 þ3:8 �4.3

ID-9 9 15 36 þ4:6 �4.3

ID-12 12 15 48 þ4:0 �4.4
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the end of the day. Further, compared to the one-sided usage of the

tank by IDS, the DA-12 eNMPC strategy drains and fills the tank in

both directions around the nominal holdup, Figure 7C.

Next, we assess single-layer eNMPC in combination with ID

prices. As for the eNMPC-DA combination, longer prediction horizons

are economically beneficial, Table 8. However, the economic profit is

generally higher for the ID profile, outperforming eNMPC-DA in all

configurations. The maximum relative savings of 4.4% are provided by

the ID-12 configuration. Comparing the DA and ID price profiles in

Figure 5 underpins the wider range, stronger fluctuation, and higher

frequencies in the ID profile over one day. Similar to Caspari et al. ,28

we conclude that a wide-range high-fluctuation price profile is eco-

nomically advantageous in the context of a single-layer eNMPC

strategy.

Figure 8 presents the closed-loop process response in the ID sce-

narios. Compared to the IDS and eNMPC-DA setups, the process is

operated more dynamically and aggressively, Figure 8A,B. In particu-

lar, a short-term increase and decrease of the production rate around

the nominal point is visible in every hour. Compared to ID-2, the

periods of increased or decreased production are longer for ID-12.

Given the storage tank hold-up constraint in Table 4, the near-nominal

operation by ID-2 is not surprising and also reflected in the nearly

constant tank holdup, Figure 8C. Further, the amounts of product

stored and withdrawn from the tank are comparable to the eNMPC-

DA configurations in Figure 7C. Likewise, the product impurity trajec-

tories in Figure 8D follow a similar trend as in Figure 7D. However,

the more aggressive process manipulation by eNMPC-ID is visible in

the form of several “spikes” in the profiles. Finally, the slight violations

of the purity bounds are attributed to feasibility tolerances.

5.3 | Two economic layers

We finally examine the proposed TEL scheme. Similar to single-layer

eNMPC, we consider different prediction horizons and control inter-

vals for the lower-layer eNMPC in the TEL strategy. Since the config-

urations are the same as in Table 8, we only state the control horizon

in Table 9. We provide the CPU costs of lower-layer eNMPC in the

Appendix. The upper-layer IDS is identical to the single-layer applica-

tion and thus the schedule in Table 7 remains valid.

From Table 9 we observe that the overall cost savings and energy

demand appear to be uncorrelated with the eNMPC horizon. Hence,

there is no practical benefit from using a prediction horizon above

2 h. We attribute the variance in the individual results to differences

in the control grid and numerical convergence.

Figure 9 depicts the closed-loop trajectories of the process oper-

ated by the TEL scheme. Since all configurations are comparably eco-

nomical, we only show the results of TEL-2. In addition, the

trajectories as scheduled by the upper-layer IDS are identical to

Figure 6. The closed-loop ASU production rate in Figure 9A exhibits a

significant deviation from the schedule in Figure 6 and is more compa-

rable to the eNMPC results in Figure 8. The same applies for the total

(A) (B)

(C) (D)

F IGURE 7 Closed-loop process response under eNMPC and DA prices. (a) ASU production rate, (b) total power demand, (c) storage tank
holdup, (d) product quality.
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power consumption, shown in Figure 9B. However, we notice

extended periods of operation near the upper and lower produc-

tion rate limit during the 12 to 14 h and 17 to 21 h, respectively.

During these periods, the scheduled storage tank holdup changes

considerably, Figure 9C. Due to the terminal holdup constraints in

the lower-layer eNMPC problem, the closed-loop trajectories must

follow the scheduled tank holdup closely, necessitating in the

periods of minimum and maximum production. Notice that in pre-

liminary studies, eNMPC encountered feasibility problems when

removing the terminal holdup constraint. Figure 9D shows the

product quality response, which exhibits similar characteristics as

for eNMPC-ID in Figure 8D.

In Figure 10, we illustrate the trading behavior of the TEL

scheme. Therein, ΔEðtÞ denotes the cumulative traded energy (MWh)

over the respective 15min interval, i¼1,2,…,96, rather than the

instantaneous power in MW. The traded energy ΔEðtÞ is calcu-

lated as:

ΔEðtÞ¼�
ðtiþ15 min

ti

ΔPðτÞ dτ, t� ½ti,tiþ15 minÞ, ð13Þ

where ΔPðtÞ corresponds to Equation (12). Positive values of ΔE cor-

respond to energy offer and negative values to purchase. Moreover,

the price difference CΔðtÞ is defined by CΔðtÞ¼ CIDðtÞ�CDAðtÞ. As

expected, energy is purchased if CΔðtÞ<0 and offered otherwise. For

CΔðtÞ≈0, the traded energy volumes are close to zero. During the 17 to

21h, the trading behavior does not follow the described mechanism and

the trading curve is fairly smooth. Again, we explain this exception by

the eNMPC terminal storage tank constraint in combination with the

strong holdup decrease scheduled by IDS, cf. Figure 9C. During this

period, the terminal constraint tracking exhausts all degrees of freedom

and thereby constrains the trading. For TEL-2, the additional profit from

arbitrage amounts to 3.3% of the nominal operating costs.

TABLE 9 Results the two-layer scheme combining IDS and
eNMPCs. The percentages state the relative deviation from the SS-
DA-1500 reference.

Operating
T c (h)

Relative energy

strategy Demand (%) Costs (%)

Reference — ±0.0 ±0.0

TEL-2 2 þ4:7 �4.1

TEL-3 3 þ4:4 �4.1

TEL-4 4 þ4:4 �4.3

TEL-6 6 þ4:5 �4.4

TEL-9 9 þ4:7 �3.8

TEL-12 12 þ4:6 �4.0

(A) (B)

(C) (D)

F IGURE 8 Closed-loop process response under eNMPC and ID prices. (a) ASU production rate, (b) total power demand, (c) storage tank
holdup, (d) product quality.
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5.4 | Shifted ID price scenario

In this second study, we consider two alternative price scenarios that

are modifications of the DA and ID profiles from the first study. The

first scenario, denoted by ID⊕, is obtained by a constant positive shift

of all ID prices such that the mean ID price is 5% higher than the mean

DA price. Similarly, we consider a price scenario ID⊖ , where the mean

ID price is 5% below the mean DA price. We apply all operating

strategies to these two scenarios and collect the economic results in

Table 10. Since the DA profile does not change, the IDS and eNMPC-

DA results in Tables 7 and 8 remain valid.

First, we emphasize that we continue to compare against the SS-

DA-1500 reference. However, we additionally examine the counter-

part to SS-ID-1500 using ID⊕ or ID⊖ prices. Due to the generally

higher price level of ID⊕, we must expect a lower profit of eNMPC-ID

and TEL. Indeed, the costs for eNMPC-ID are shifted to positive

(A) (B)

(C) (D)

F IGURE 9 Closed-loop process response under two-layer IDS and eNMPC. (a) ASU production rate, (b) total power consumption, (c) storage
tank holdup, (d) product quality.

F IGURE 10 Energy volumes purchased
(ΔEðtÞ<0) or offered (ΔEðtÞ> 0) by the two-
layer strategy.
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values, indicating higher expenses compared to the steady-state oper-

ation with energy products from the DA market. We observe ≥0:7%

cost increase over the stationary DA reference. As before, the long-

horizon eNMPC configurations realize better economic results than

short-horizon eNMPC. When compared to SS-ID⊕-1500, the

eNMPC-ID strategy, however, generates economic savings. In fact,

eNMPC-ID follows nearly the same operating strategy as before, only

on a higher price level. We provide the respective closed-loop trajec-

tories in the SI.

As opposed to stand-alone eNMPC-ID, the TEL strategy realizes

economic profit comparable to the first case study, despite the higher

price level of ID⊕. Moreover, the cost savings remain independent of

the TEL-eNMPC prediction horizon, wherefore we may use a short

horizon. Compared to SS-ID⊕-1500 the TEL cost savings are even as

high as 9.4%.

In the case of a systematic ID price shift in negative direction, the

savings are reversed. Due to the absence of a scheduling layer, stand-

alone eNMPC has no commitments regarding DA products and can

fully benefit from lower ID⊖ prices. As a consequence, eNMPC gen-

erates up to 9.7% revenue compared to the SS-DA-1500 reference.

On the other hand, the energy volumes purchased on the DA market

constrain the economic profit of the TEL strategy. Yet, remarkably,

the TEL scheme continues to realize a benefit of up to 4.4% compared

to the SS-DA-1500 reference. We notice that a slightly longer TEL-

eNMPC horizon of 4 h is required here to realize savings of 4%.

5.5 | Overall comparison

We summarize the findings from the case study. Figure 11 extracts

the key trends from Tables 6 to 9 and compares the different

operating strategies in the first price scenario. In all cases, we see a

positive increase in energy demand, that is, flexible process operation

consumes more power than steady-state operation. At the same time,

the operating strategies achieve different profit, with single-layer IDS

providing little savings at the highest energy demand. The economic

profit from single-layer eNMPC strongly depends on the prediction

horizon and the availability of a reliable price forecast over this hori-

zon. Moreover, eNMPC-ID outperforms eNMPC-DA due to a stron-

ger variance in the ID profile compared to DA prices. We account the

dependence of profit on the prediction horizon to the price variance

rather than to the process dynamics. Figure 4 indicates that the

closed-loop settling time is ≈2 h. In contrast, the principal frequency

of the price profiles in Figure 5 is f0 ≈1=12 h�1. Consequently, a larger

horizon covers a larger price range to be leveraged in optimization.

The TEL scheme achieves similar savings as the long-horizon

eNMPC-ID configurations. At the same time, a significantly shorter

TEL-eNMPC prediction horizon τc than in single-layer eNMPC enables

similar savings. This finding is consistent with the above discussion as

the upper-layer TEL-IDS already covers the slower price trends at f0

and the TEL-eNMPC optimizes around this reference using the con-

siderably faster ID-DA deviations of principal frequency f1 ≈1=2 h�1,

see Figure 5. Hence, a shorter horizon is sufficient. Notably, the major

share of economic profit is due to arbitrage, as clear from comparing

IDS and TEL in Figure 11. For further information on the principal fre-

quencies see References 45, 86.

A short eNMPC horizon is practically beneficial for two reasons.

First, a long horizon is generally associated with high online CPU costs

and computational delay. The comparison of the CPU costs of stand-

alone eNMPC and TEL-eNMPC in the SI confirms this trend. As we

aim for fast control updates, we thus prefer short horizons. Second,

price prediction uncertainty generally grows with longer horizons,87,88

TABLE 10 Results in the second and
third price scenarios. The percentages
state the relative deviation from the SS-
DA-1500 reference.

Scenario ⊕ Scenario ⊖

Operating
τc (h)

Relative energy Relative energy

strategy Demand (%) Costs (%) Demand (%) Costs (%)

Reference — ±0.0 ±0.0 ±0.0 ±0.0

SS-ID-1500 — ±0.0 þ5:0 ±0.0 �5.0

ID-2 2 þ1:8 þ2:7 þ2:2 �7.5

ID-3 3 þ2:2 þ2:0 þ2:7 �8.4

ID-4 4 þ2:2 þ1:8 þ2:7 �8.7

ID-6 6 þ3:5 þ0:9 þ4:1 �9.6

ID-9 9 þ4:6 þ1:5 þ4:8 �9.5

ID-12 12 þ3:7 þ0:7 þ4:1 �9.7

TEL-2 2 þ4:8 �4.0 þ4:9 �2.5

TEL-3 3 þ4:4 �4.1 þ5:0 �2.4

TEL-4 4 þ4:3 �4.1 þ4:6 �4.0

TEL-6 6 þ4:3 �4.4 þ5:0 �4.4

TEL-9 9 þ4:5 �3.8 þ4:9 �3.9

TEL-12 12 þ4:4 �4.0 þ4:7 �4.0
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irrespective that herein we have assumed the exact knowledge of

future ID prices. In particular, for short eNMPC horizons we can

expect fairly reliable short-term ID forecast, whereas an eNMPC strat-

egy based on 12 h predictions may suffer from price uncertainty. We

thus regard the short eNMPC horizons in the TEL strategy as advan-

tage in regards of economic robustness. We will investigate this effect

more in-depth in future works.

In the second and third price scenarios, the TEL schemes proves

to be economically robust against systematic price shifts between the

DA and ID markets. At the same time, the economic performance of

stand-alone eNMPC-ID is more sensitive to the price differences due

to the sole dependency on the ID profile. As a result, stand-alone

eNMPC and TEL outperform each other in one scenario each. Clearly,

the commitment to DA energy products provides an economic fall-

back in the case of high ID prices, but also constrains the TEL revenue

in case of considerably lower ID prices. However, the TEL approach

succeeds to realize a nearly constant economic revenue in all scenar-

ios, whereas stand-alone eNMPC even results in a cost increase rela-

tive to the steady-state DA reference. Overall, TEL is the only scheme

that realizes savings in all price scenarios.

6 | CONCLUSIONS AND OUTLOOK

We propose an integrated scheduling and control approach with two

economic layers, termed TEL, for energy flexible operation of chemical

production processes. Therein, we combine dynamic scheduling and

eNMPC to profit from fluctuating energy prices and price differences

between DA auction and continuous ID markets. The approach unites

several advantages of the individual approaches. First, IDS is executed

offline and thus allows for long scheduling horizons, that is, planning

one or multiple days ahead, which is not computationally feasible for

stand-alone eNMPC. By considering “long-term” production goals,

IDS increases flexibility and provides an economically optimized oper-

ating trajectory. Second, employing lower-layer eNMPC enables

economic disturbance rejection as well as rapid response to unex-

pected market fluctuations, thereby providing an advantage over

stand-alone IDS.

In a case study, we compared the proposed TEL scheme with

state-of-the-art single-layer approaches and demonstrated high sav-

ings and economic robustness of our method. For all methods, the

price differences in a moderate scenario constructed from historical

European price data were sufficient to incentivize DSM and intermit-

tently overproduce and store liquid gas product. In general, flexibiliza-

tion is associated with an increased energy consumption compared to

steady-state operation. At the same time, the strategies investigated

realize different revenues, with IDS and short-horizon eNMPC show-

ing the worst performance. The economic profit from single-layer

eNMPC strongly depends on a long prediction horizon, a reliable price

forecast, and the DA/ID price levels. Conversely, the proposed TEL

strategy consistently provides high savings in all price scenarios and is

therefore economically promising. By participating in two markets, the

TEL strategy enables the plant operator to benefit from arbitrage, that

is, buying on one market and selling on another. Importantly, the pre-

diction horizon of eNMPC in the TEL setup can be chosen consider-

ably shorter than in a stand-alone eNMPC application, whereby

computational tractability and price prediction accuracy may be con-

siderably improved.

In the present study, we did not investigate the effect of process

disturbances on the performance of the competing schemes. In fact,

unpredictable disturbances are rather uncommon for ASUs. Generally,

stand-alone eNMPC performs disturbance rejection within the regular

economic optimization. Conversely, a correction of the schedule in

IDS necessitates trading on the ID market to update the DA schedule.

The disturbance rejection features of eNMPC are inherited by the

TEL scheme. Performing economic disturbance rejection in the lower

layer of a two-layer economic scheme has already been discussed in

the literature.47–49 However, in the case of infrequent but large dis-

turbances, a recomputation of the top-layer schedule over the longer

scheduling horizon may offer additional benefits.

F IGURE 11 Relative cost savings and energy
demand of single-economic-layer and TEL operating
strategies compared to steady-state operation. The time
values indicate the eNMPC prediction horizon.
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Future work should extend the approach to multi-product pro-

cesses and variable product grades. Using a “power-tracking NMPC”
instead of production rate tracking as well as reference trajectory

tracking instead of setpoint tracking may further improve the eco-

nomic performance of the scheme. Additionally, accounting for the ID

market in the day-ahead IDS problem as well as applying stochastic

ID price forecasting in either integration approach may enable further

benefits. Finally, modeling and optimization strategies for IDS with

hard-constrained lower-layer controllers are needed.
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